Restricted edge connectivity and restricted connectivity of graphs

Litao Guo
School of Applied Mathematics
Xiamen University of Technology
Xiamen Fujian 361024
P.R.China
ltguo2012@126.com

Xiaofeng Guo
School of Mathematical Sciences
Xiamen University
Xiamen Fujian 361005
P.R.China
xfguo@xmu.edu.cn

Abstract

Let $G=(V, E)$ be a connected graph. Let $G=(V, E)$ be a connected graph. An edge set $F \subset E$ is said to be a k-restricted edge cut, if $G-F$ is disconnected and every component of $G-F$ has at least k vertices. The k-restricted edge connectivity of G, denoted by $\lambda_{k}(G)$, is the cardinality of a minimum k-restricted edge cut of G. A graph G is λ_{k}-connected, if G contains a k-restricted edge cut. A λ_{k}-connected graph G is called λ_{k}-optimal, if $\lambda_{k}(G)=\xi_{k}(G)$, where $\xi_{k}(G)=\min \{|[U, V-U]|: U \subset V,|U|=k$ and $G[U]$ is connected $\}$.An vertex set X is a k-restricted cut of G, if $G-X$ is not connected and every component of $G-X$ has at least k vertices. The k-restricted connectivity $\kappa_{k}(G)$ (in short κ_{k}) of G, is the cardinality of a minimum k-restricted cut of G. A λ_{k}-connected graph G is said to be super- λ_{k}, if G is λ_{k}-optimal and every minimum k-restricted edge cut isolates a component with exactly k vertices. A κ_{k}-connected graph G is said to be super- κ_{k}, if $\kappa_{3}(G)=\xi_{3}(G)$ and the deletion of each minimum k-restricted cut isolates a component with exactly k vertices. In this paper, we study the restricted edge connectivity and restricted connectivity of graphs, line graphs and a kind of transformation graphs.

Key-Words: 3-Restricted edge connectivity; Super- λ_{3}; Super- κ_{3}

1 Introduction

It is well known that graph theory plays a key role in the analysis and design of reliable or invulnerable networks. A network is often modeled by a graph $G=(V, E)$ with the vertices representing nodes such as processors or stations, and the edges representing links between the nodes. One fundamental consideration in the design of networks is reliability. When studying network reliability, we consider the following model [3]. Let $G=(V, E)$ be a graph with the vertices reliable, but the edges may fail independently with the same probability $\rho \in(0,1)$. One measure of the network reliability is the probability $P(G)$ of G being disconnected:

$$
P(G)=\sum_{i=\lambda}^{\epsilon} m_{i}(G) \rho^{i}(1-\rho)^{\epsilon-i}
$$

where ϵ is the number of edges in $G, m_{i}(G)$ is the number of edge cuts of size i, λ is the edge connectivity. $P(G)$ is a polynomial on variable ρ, and is called unreliability polynomial. The smaller $P(G)$ is, the more reliable is the network. In general, to determine $P(G)$ is difficult[3]. When ρ is sufficiently small, the minimum of $P(G)$ can be obtained by maximizing λ first and then minimizing $m_{\lambda}(G), m_{\lambda+1}(G), \cdots, m_{\epsilon}(G)$ sequentially [17]. Connectivity is a parameter to measure the reliability of networks.

In this paper, we only consider simple graphs. Let $G=(V, E)$ be a connected graph. For a vertex $v \in V, N(v)$ is the set of all vertices adjacent to v. The degree of a vertex v, denoted by $d(v)$, is the size of $N(v)$. If $u, v \in V$, then $d(u, v)$ denotes the length of a shortest (u, v)-path. For $X, Y \subset V$, $d(X, Y)$ denotes the distance between X and Y; more formally, $d(X, Y)=\min \{d(x, y): \quad$ for any $x \in$ X and any $y \in Y\}$. If $v \in V, r \geq 0$ is an integer, then let $N_{r}(v)=\{w \in V: d(w, v)=r\}$, in particular, $N_{1}(v)=N(v)$. For $X \subset V, N_{r}(X)=\{w \in$ $V: d(w, X)=r\}$ where $d(w, X)=d(\{w\}, X)$, and $N_{1}(X)=N(X)$. We denote the diameter and girth by D and g, respectively, and write $G-v$ for $G-\{v\}$. A path is called k-path, if its length is k. For $U \subseteq V, G[U]$ is the subgraph of G induced by the vertex subset U, and $[U, V-U]$ is the set of edges with one end in U and the other in $V-U$. And $\xi_{k}(G)$ $=\min \{|[U, V-U]|: U \subset V,|U|=k$ and $G[U]$ is connected $\}$.

Recall that for every graph G we have $\lambda \leq \delta$, where δ is the minimum degree of G. If $\lambda=\delta$, then G is said to be maximally edge connected or λ-optimal. A graph G is super edge connected, or simply super- λ, if every minimum vertex cut is the neighbors of a vertex of G, that is every minimum vertex cut isolates a vertex. In the definitions of $\lambda(G)$, no restrictions are imposed on the components of $G-S$,
where S is an edge cut. To compensate for this shortcoming, it would seem natural to generalize the notion of the classical connectivity by imposing some conditions or restrictions on the components of $G-S$. Following this idea, k-restricted edge connectivity were proposed in [4,5]. An edge set $F \subset E$ is said to be a k-restricted edge cut, if $G-F$ is disconnected and every component of $G-F$ has at least k vertices. The k-restricted edge connectivity of G, denoted by $\lambda_{k}(G)$, is the cardinality of a minimum k-restricted edge cut of G. If $|F|=\lambda_{k}$, then F is called a λ_{k} cut. Not all connected graphs have λ_{k}-cuts $(k \geq 2)$, for example $K_{1, n-1}$. A graph G is λ_{k}-connected, if G contains a k-restricted edge cut. A λ_{k}-connected graph G is called λ_{k}-optimal, if $\lambda_{k}(G)=\xi_{k}(G)$.

An vertex set X is a k-restricted cut of G, if $G-$ X is not connected and every component of $G-X$ has at least k vertices. The k-restricted connectivity $\kappa_{k}(G)$ (in short κ_{k}) of G, is the cardinality of a minimum k-restricted cut of G. And X is called a κ_{k} cut, if $|X|=\kappa_{k}$. Not all connected graphs have κ_{k} cuts $(k \geq 2)$, for example $K_{1, n-1}$. A graph G is $\kappa_{k^{-}}$ connected, if a κ_{k}-cut exists. For $k=1,2$ we can see [1, 2, 8-15, 18, 19]. We will study the case of $k=3$.

For $X \subset V, v \in V \backslash X$ and $u \in N(v)$. Let us introduce the sets

$$
\begin{aligned}
X_{u}^{+}(v)= & \{z \in N(v)-u: d(z, X)=d(v, X) \\
& +1\} ; \\
X_{u}^{=}(v)= & \{z \in N(v)-u: d(z, X)=d(v, X)\} \\
X_{u}^{-}(v)= & \{z \in N(v)-u: d(z, X)=d(v, X) \\
& -1\} .
\end{aligned}
$$

Clearly, $X_{u}^{+}(v), X_{u}^{=}(v)$ and $X_{u}^{-}(v)$ form a partition of $N(v)-u$. And $\left|X_{u}^{+}(v)\right|+\left|X_{u}^{=}(v)\right|+\left|X_{u}^{-}(v)\right|=$ $d(v)-1$. If $d(v) \geq 2, u, w \in N(v)$, then

$$
\begin{aligned}
X_{u w}^{+}(v)= & \{z \in N(v)-\{u, w\}: d(z, X)= \\
& d(v, X)+1\} ; \\
X_{u w}^{=}(v)= & \{z \in N(v)-\{u, w\}: d(z, X)= \\
& d(v, X)\} ; \\
X_{u w}^{-}(v)= & \{z \in N(v)-\{u, w\}: d(z, X)= \\
& d(v, X)-1\} .
\end{aligned}
$$

Then $X_{u w}^{+}(v), X_{u w}^{=}(v)$ and $X_{u w}^{-}(v)$ form a partition of $N(v)-\{u, w\}$, and $\left|X_{u w}^{+}(v)\right|+\left|X_{u w}^{=}(v)\right|+$ $\left|X_{u w}^{-}(v)\right|=d(v)-2$.

Wang et al.[16] obtain the following result for $\lambda_{3}(G)$.

Theorem 1.1. Let G be a simple connected graph of order $n \geq 6$. If G is not a subgraph of any of the graphs shown in Fig.1, then both $\lambda_{3}(G)$ is well defined and $\lambda_{3}(G) \leq \xi_{3}(G)$.

Fig. 1

From this theorem we can see that if G is a connected graph with girth $g \geq 4$ and $\delta \geq 3$, then G has 3 -restricted edge cuts.

We also have the following results for $\lambda_{3}(G)$ and $\kappa_{3}(G)$.

Theorem 1.2. (1) [6] Let G be a λ_{3}-connected graph with girth $g \geq 4$, minimum degree $\delta \geq 3$ and diameter D. If $D \leq g-3$, then G is λ_{3}-optimal.
(2) [7] Let G be a connected graph with girth $g \geq 6$, and minimum degree $\delta \geq 3$. Then G is κ_{3}-connected and $\kappa_{3}(G) \leq \xi_{3}(G)$, if $g \geq 7$ or $\delta \geq$ 4.
(3) [7] Let G be a κ_{3}-connected graph with girth $g \geq 4$, minimum degree $\delta \geq 3$ and diameter D. If $D \leq g-4$, then $\kappa_{3}(G)=\xi_{3}(G)$.

In this paper, we investigate super- λ_{3} connectivity and super- κ_{3} connectivity of graphs with girth $g \geq 4$ and minimum degree $\delta \geq 3$. We also study the connectivity of a kind of transformation graphs. Some sufficient conditions for the graphs to be super- λ_{3} (resp. super- κ_{3}) are given in Theorem 3.1, which depends on diameters of the graphs and their line graphs.

In Section 2 we shall give some properties of 3restricted edge cuts and 3-restricted cuts of graphs, in Section 3 we prove the sufficient conditions in Theorem 3.1 for graphs to be super- λ_{3} (resp. super- κ_{3}). In Section 4 we study the edge connectivity and super edge connectivity of a kind of transformation graphs.

2 Properties of 3-restricted edge cuts and 3 -restricted cuts of graphs

If G is a graph with girth $g \geq 4$, then every connected subgraph of G with three vertices is a path $x y z$ of length two. Thus, $\xi_{3}(G)=\min \{d(x)+d(y)+$ $d(z)-4: x y z$ is a path of length two in $G\}$.

Lemma 2.1. Let G be a connected graph with girth $g \geq 4$, minimum degree $\delta \geq 3$ and $\xi_{3}(G)$. Let $X \subseteq V$ be a vertex cut with $|X| \leq \xi_{3}(G)$ and C be any connected component of $G-X$ with $|V(C)| \geq 3$. Then the following assertions hold:
(1) There exists an edge $u v$ in C such that $d(\{u, v\}, X) \geq\lfloor(g-4) / 2\rfloor$.
(2) If g is odd and $|V(C)| \geq 4$, then there is a vertex $u \in C$ with $d(u, X) \geq(g-5) / 2$ such that $\left|N_{(g-5) / 2}(u) \cap X\right| \leq 1$.

Proof. For $g=4,5,6$, both assertions of the lemma hold, since $d(u, X) \geq 1$ for all u in C and $|V(C)| \geq$ 3. So suppose that $g \geq 7$ and let $\mu=\max \{d(u, X)$: $u \in V(C)\}$. Note that $\mu \geq 1$. If $\mu \geq\lfloor(g-2) / 2\rfloor$, then both assertions clearly hold. Thus, we assume that $\mu \leq\lfloor(g-4) / 2\rfloor$.
(1) If $\mu=1$, then the result holds. Thus assume that $\mu \geq 2$.

Claim 1. There is an edge $u v$ in C such that $d(\{u, v\}, X)=\mu$.

We argue by contradiction. Suppose that each vertex u in C at $d(u, X)=\mu$ satisfies $d(v, X)=\mu-1$ for all $v \in N(u)$. As $\delta \geq 3$, take $w, v \in N(u)$, then vuw is a 2-path in C. Thus $d(v, X)=d(w, X)=$ $\mu-1$. Each vertex in $N\left(X_{u}^{+}(w)\right)$ and $N\left(X_{u}^{+}(v)\right)$ is at distance $\mu-1$ from X. Moreover, we have $\left|N_{\mu-1}\left(X_{u}^{=}(w)\right) \cap X\right| \geq\left|X_{u}^{=}(w)\right|$. Otherwise, there are two vertices $x_{1}, x_{2} \in X_{u}^{=}(w)$ both at distance $\mu-1$ from a vertex $x \in N_{\mu-1}\left(X_{u}^{=}(w)\right) \cap X$. There is a cycle going through $\left\{x_{1}, w, x_{2}, x\right\}$ of length at most $2 \mu \leq 2\lfloor(g-4) / 2\rfloor \leq g-4$, contrary to the fact that the length of a shortest cycle in G is equal to g. Similarly, we have

$$
\begin{aligned}
& \left|N_{\mu-1}(N(u)-v-w) \cap X\right| \geq|N(u)-v-w|, \\
& \left|N_{\mu-1}\left(X_{u}^{=}(v)\right) \cap X\right| \geq\left|X_{u}^{=}(v)\right|, \\
& \left|N_{\mu-1}\left(X_{u}^{=}(w)\right) \cap X\right| \geq\left|X_{u}^{=}(w)\right|, \\
& \left|N_{\mu-1}(w) \cap X\right| \geq\left|X_{u}^{-}(w)\right|, \\
& \left|N_{\mu-1}(v) \cap X\right| \geq\left|X_{u}^{-}(v)\right|, \\
& \left|N_{\mu-1}\left(N\left(X_{u}^{+}(w)\right)-w\right) \cap X\right| \geq\left|X_{u}^{+}(w)\right|, \\
& \left|N_{\mu-1}\left(N\left(X_{u}^{+}(v)\right)-v\right) \cap X\right| \geq\left|X_{u}^{+}(v)\right| .
\end{aligned}
$$

Likewise, the sets $N_{\mu-1}\left(X_{u}^{=}(w)\right) \cap X, N_{\mu-1}(N(u)-$ $v-w) \cap X, N_{\mu-1}\left(X_{u}^{=}(v)\right) \cap X, N_{\mu-1}(w) \cap$ $X, N_{\mu-1}(v) \cap X, N_{\mu-1}\left(N\left(X_{u}^{+}(w)\right)-w\right) \cap X$, and $N_{\mu-1}\left(N\left(X_{u}^{+}(v)\right)-v\right) \cap X$ are pairwise disjoint.

Hence we have

$$
\begin{aligned}
\xi_{3}(G) \geq & |X| \\
\geq & \left|N_{\mu-1}\left(X_{u}^{=}(w)\right) \cap X\right|+ \\
& \left|N_{\mu-1}(w) \cap X\right|+ \\
& \left|N_{\mu-1}\left(X_{u}^{=}(v)\right) \cap X\right|+ \\
& \left|N_{\mu-1}(N(u)-v-w) \cap X\right|+ \\
& \left|N_{\mu-1}(v) \cap X\right|+ \\
& \left|N_{\mu-1}\left(N\left(X_{u}^{+}(w)\right)-w\right) \cap X\right|+ \\
& \left|N_{\mu-1}\left(N\left(X_{u}^{+}(v)\right)-v\right) \cap X\right| \\
\geq & \left|X_{u}^{=}(w)\right|+\left|X_{u}^{-}(w)\right|+ \\
& \left|X_{u}^{=}(v)\right|+|N(u)-v-w|+ \\
& \left|X_{u}^{-}(v)\right|+\left|X_{u}^{+}(w)\right| \\
& +\left|X_{u}^{+}(v)\right| \\
= & d(u)+d(w)+d(v)-4 \\
\geq & \xi_{3}(G) .
\end{aligned}
$$

Thus, the above inequalities become equalities, yielding

$$
\begin{align*}
X= & \left(N_{\mu-1}\left(X_{u}^{=}(w)\right) \cap X\right) \cup \\
& \left(N_{\mu-1}(N(u)-v-w) \cap X\right) \cup \\
& \left(N_{\mu-1}\left(X_{u}^{=}(v)\right) \cap X\right) \\
& \cup\left(N_{\mu-1}(w) \cap X\right) \cup\left(N_{\mu-1}(v) \cap X\right) \\
& \cup\left(N_{\mu-1}\left(N\left(X_{u}^{+}(w)\right)-w\right) \cap X\right) \cup \\
& \left(N_{\mu-1}\left(N\left(X_{u}^{+}(v)\right)-v\right) \cap X\right) . \tag{1}
\end{align*}
$$

And

$$
\begin{align*}
& \left|N_{\mu-1}(N(u)-v-w) \cap X\right|=|N(u)-v-w| \\
& \left|N_{\mu-1}\left(N\left(X_{u}^{+}(w)\right)-w\right) \cap X\right|= \\
& \left|N\left(X_{u}^{+}(w)\right)-w\right|=\left|X_{u}^{+}(w)\right| ; \\
& \left|N_{\mu-1}\left(N\left(X_{u}^{+}(v)\right)-v\right) \cap X\right|=\left|N\left(X_{u}^{+}(v)\right)-v\right| \\
& =\left|X_{u}^{+}(v)\right| . \tag{2}
\end{align*}
$$

From (2) it follows that if $\left|X_{u}^{+}(w)\right|>0$, then every vertex $y \in X_{u}^{+}(w)$ has degree 2 , which contradicts to the fact that $\delta \geq 3$. Then $X_{u}^{+}(w)=\varnothing$. Similarly, $X_{u}^{+}(v)=\varnothing$. Furthermore, (2) also implies that each vertex $x \in N(u)-v-w$ has one unique neighbor in X at distance $\mu-1$, that is, $\left|X_{u}^{-}(x)\right|=1$. Similarly, for the edge $u x$ we obtain that $X_{u}^{+}(x)=\varnothing$, which implies that $X_{u}^{=}(x) \neq \varnothing$ because $\delta \geq 3$. Take a vertex $x^{\prime} \in X_{u}^{=}(x)$, from (1) we conclude that there is a cycle passing through $\left\{x^{\prime}, x, u\right\}$ and the vertex $y \in$ $N_{\mu-1}\left(x^{\prime}\right) \cap X$ of length at most $2(\mu-1)+4 \leq g-1$, then there would be a cycle of length less than g, a contradiction.

Claim 2. $\mu \geq\lfloor(g-4) / 2\rfloor$.
By contradiction, suppose that $\mu \leq\lfloor(g-4) / 2\rfloor-$ 1. From Claim 1 we know there is an edge $u v$ in C
such that $d(\{u, v\}, X)=\mu$. In this case, $X_{u}^{+}(v)=$ $X_{v}^{+}(u)=\varnothing$. Then C has a 2-path uvw such that $d(w, X)=\mu$ or $d(w, X)=\mu-1$.

Firstly, assume that $d(w, X)=\mu$. Thus we have $X_{v}^{+}(w)=\varnothing$. Arguing as in Claim 1 we have $\left|N_{\mu}\left(X_{u w}^{=}(v)\right) \cap X\right| \geq\left|X_{u w}^{=}(v)\right|$ and $\left|N_{\mu}(v) \cap X\right| \geq\left|X_{u w}^{-}(v)\right|$. Furthermore, the sets $N_{\mu}\left(X_{u w}^{=}(v)\right) \cap X, N_{\mu}(v) \cap X, N_{\mu}\left(X_{v}^{=}(u)\right) \cap$ $X, N_{\mu}(u) \cap X, N_{\mu}\left(X_{v}^{=}(w)\right) \cap X$ and $N_{\mu}(w) \cap X$ are pairwise disjoint. Therefore we have

$$
\begin{aligned}
\xi_{3}(G) \geq & |X| \\
\geq & \left|N_{\mu}\left(X_{u w}^{=}(v)\right) \cap X\right|+\left|N_{\mu}(v) \cap X\right| \\
& +\left|N_{\mu}\left(X_{v}^{=}(u)\right) \cap X\right|+\left|N_{\mu}(u) \cap X\right| \\
& +\left|N_{\mu}\left(X_{v}^{=}(w)\right) \cap X\right|+\left|N_{\mu}(w) \cap X\right| \\
\geq & \left|X_{u w}^{=}(v)\right|+\left|X_{u w}^{-}(v)\right|+ \\
& \left|X_{v}^{=}(u)\right|+\left|X_{v}^{-}(u)\right|+ \\
& \left|X_{v}^{=}(w)\right|+\left|X_{v}^{-}(w)\right| \\
= & d(u)+d(w)+d(v)-4 \\
\geq & \xi_{3}(G) .
\end{aligned}
$$

Thus, the above inequalities become equalities, yielding

$$
\begin{align*}
X= & \left(N_{\mu}\left(X_{u w}^{=}(v)\right) \cap X\right) \cup\left(N_{\mu}(v) \cap X\right) \cup \\
& \left(N_{\mu}\left(X_{v}^{=}(u)\right) \cap X\right) \cup\left(N_{\mu}(u) \cap X\right) \cup \\
& \left(N_{\mu}\left(X_{v}^{=}(w)\right) \cap X\right) \cup\left(N_{\mu}(w) \cap X\right) \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
& \left|N_{\mu}\left(X_{u w}^{=}(v)\right) \cap X\right|=\left|X_{u w}^{=}(v)\right|, \\
& \left|N_{\mu}\left(X_{v}^{=}(u)\right) \cap X\right|=\left|X_{v}^{=}(u)\right|, \\
& \left|N_{\mu}\left(X_{v}^{=}(w)\right) \cap X\right|=\left|X_{v}^{=}(w)\right| . \tag{4}
\end{align*}
$$

From (4) we know that every vertex $z \in X_{u w}^{=}(v) \cup$ $X_{v}^{=}(u) \cup X_{v}^{=}(w)$ has a unique neighbor at distance μ in X. As $\delta \geq 3$, there exists a vertex $z^{\prime} \in N(z) \cap$ $N_{\mu}(X)$ and $z^{\prime} \bar{\in}\{u, v, w\}$, for every $z \in X_{u w}^{=}(v) \cup$ $X_{v}^{=}(u) \cup X_{v}^{=}(w)$. From (3) it follows that there is a cycle of length at most $2 \mu+5 \leq g-1$, contrary to the fact that the length of a shortest cycle in G is equal to g.

Secondly if $d(w, X)=\mu-1$, then it is analogous to the case of $d(w, X)=\mu$.

As a consequence of both Claim 1 and Claim 2 we conclude that there exists an edge $u v$ in C such that $d(\{u, v\}, X) \geq\lfloor(g-4) / 2\rfloor$.
(2) Suppose now that $\mu=(g-5) / 2$ otherwise by item (1) we are done. And we denote $C_{X}=\{u \in$ $V(C): d(u, X)=(g-5) / 2\}$. By item (1) we can take an edge $u v$ in $G\left[C_{X}\right]$.

Firstly, assume $(N(u)-v) \cap C_{X} \neq \varnothing$ or $(N(v)-$ $u) \cap C_{X} \neq \varnothing$, say, $(N(v)-u) \cap C_{X} \neq \varnothing$. Notice
that $X_{v}^{+}(u)=X_{v}^{+}(w)=X_{u w}^{+}(v)=\varnothing$ and that the sets $X_{v}^{=}(u), X_{v}^{-}(u), X_{v}^{=}(w), X_{v}^{-}(w), X_{u w}^{=}(v)$ and $X_{u w}^{-}(v)$ are pairwise disjoint. We will prove it by contradiction.

By contradiction, suppose that any vertex u in C_{X} satisfies $\left|N_{(g-5) / 2}(u) \cap X\right| \geq 2$. Then we have $\left|N_{(g-5) / 2}\left(X_{v}^{=}(u)\right) \cap X\right| \geq$ $2\left|X_{v}^{=}(u)\right|,\left|N_{(g-5) / 2}\left(X_{u w}^{=}(v)\right) \cap X\right| \geq 2\left|X_{u w}^{=}(v)\right|$, and $\left|N_{(g-5) / 2}\left(X_{v}^{=}(w)\right) \cap X\right| \geq 2\left|X_{v}^{=}(w)\right|$. Since the sets $N_{(g-5) / 2}\left(X_{v}^{=}(u)\right) \cap X, N_{(g-7) / 2}\left(X_{v}^{-}(u)\right) \cap$ $X, N_{(g-5) / 2}\left(X_{u w}^{=}(v)\right) \cap X, N_{(g-7) / 2}\left(X_{u w}^{-}(v)\right) \cap$ $X, N_{(g-5) / 2}\left(X_{v}^{=}(w)\right) \cap X$ and $N_{(g-7) / 2}\left(X_{v}^{-}(w)\right) \cap X$ are pairwise disjoint, it follows that

$$
\begin{aligned}
\xi_{3}(G) \geq & |X| \\
\geq & \left|N_{(g-5) / 2}\left(X_{v}^{=}(u)\right) \cap X\right|+ \\
& \left|N_{(g-7) / 2}\left(X_{v}^{-}(u)\right) \cap X\right|+ \\
& \left|N_{(g-5) / 2}\left(X_{u w}^{=}(v)\right) \cap X\right|+ \\
& \left|N_{(g-7) / 2}\left(X_{u w}^{-}(v)\right) \cap X\right|+ \\
& \left|N_{(g-5) / 2}\left(X_{v}^{=}(w)\right) \cap X\right|+ \\
& \left|N_{(g-7) / 2}\left(X_{v}^{-}(w)\right) \cap X\right| \\
\geq & 2\left|X_{v}^{=}(u)\right|+\left|X_{v}^{-}(u)\right|+ \\
& 2\left|X_{u w}^{=}(v)\right|+\left|X_{u w}^{-}(v)\right|+ \\
& 2\left|X_{v}^{=}(w)\right|+\left|X_{v}^{-}(w)\right| \\
\geq & \xi_{3}(G)+\left|X_{v}^{=}(u)\right|+ \\
& \left|X_{u w}^{=}(v)\right|+\left|X_{v}^{=}(w)\right| .
\end{aligned}
$$

Then $X_{v}^{=}(u)=X_{u w}^{=}(v)=X_{v}^{=}(w)=\varnothing$ and

$$
\begin{align*}
X= & \left(N_{(g-5) / 2}(u) \cap X\right) \cup\left(N_{(g-5) / 2}(v) \cap X\right) \cup \\
& \left(N_{(g-5) / 2}(w) \cap X\right) . \tag{5}
\end{align*}
$$

Furthermore, we can obtain $\left|N_{(g-5) / 2}(u) \cap X\right|=$ $\left|X_{v}^{-}(u)\right|,\left|N_{(g-5) / 2}(v) \cap X\right|=\left|X_{u w}^{-}(v)\right|$ and $\left|N_{(g-5) / 2}(w) \cap X\right|=\left|X_{v}^{-}(w)\right|$. This means that $\mu=(g-5) / 2 \geq 2$. As $\delta \geq 3$, we have $\mid N(z) \cap$ $\left(C_{X}-u\right) \mid \geq d(z)-2 \geq 1$ for all $z \in X_{v}^{-}(u)$ (Otherwise a cycle of length at most $g-2$ would appear). Take a vertex $z \in X_{v}^{-}(u)$ and consider a vertex $z^{\prime} \in N(z) \cap\left(C_{X}-u\right)$. Then from (5) a cycle of length at most $g-1$ would appear, a contradiction.

Secondly, if $(N(u)-v) \cap C_{X}=\varnothing$ and $(N(v)-$ u) $\cap C_{X}=\varnothing$, then take a vertex w in $N(v)$ with $d(w, X)=(g-7) / 2$. Hence $u v w$ is a 2-path in C, it is analogous to the above case.

Let $G=(V, E)$ be a λ_{3}-connected graph. An arbitrary λ_{3}-cut F can be denoted by $[V(C), V(\bar{C})$], where C and \bar{C} are the only two components of $G-F$. There are $X \subseteq V(C)$ and $Y \subseteq V(\bar{C})$ such that $X \cup Y$ is the set of the end vertices of $[V(C), V(\bar{C})]$, and so $[V(C), V(\bar{C})]=[X, Y]$.

A λ_{3}-connected graph G is said to be super $-\lambda_{3}$, if G is λ_{3}-optimal and every minimum 3-restricted edge cut isolates a component with exactly three vertices. A κ_{3}-connected graph G is said to be super- κ_{3}, if $\kappa_{3}(G)=\xi_{3}(G)$ and the deletion of each minimum 3restricted cut isolates a component with exactly three vertices.

Lemma 2.2. Let G be a connected graph with girth $g \geq 6$, and minimum degree $\delta \geq 3$. Let $[V(C), V(\bar{C})]$ $=[X, Y]$ be a λ_{3}-cut. Then the following assertions hold:
(1) If $V(C)=X$, then G is super $-\lambda_{3}$.
(2) If G is not super- λ_{3}, then $C-X$ has a component with at least three vertices.

Proof. Since $g \geq 6$ and $\delta \geq 3$, by Theorem 1.1 G is λ_{3}-connected.
(1) Suppose that $V(C)=X$, then each vertex of C is incident with some edges of $[X, Y]$. If $|V(C)|=$ 3 , then we are done. So assume that $|V(C)| \geq 4$. Let $u v w$ be a 2-path of C. Because $\delta \geq 3$, we assume that $\left|X_{v}^{=}(u)\right| \geq 1$. Since girth $g \geq 6$, thus arguing as before, we have

$$
\begin{aligned}
\xi_{3}(G) \geq & \lambda_{3}(G) \\
= & |[X, Y]| \\
\geq & |[u, Y]|+|[v, Y]|+ \\
& |[w, Y]|+\left|\left[X_{v}^{=}(u), Y\right]\right|+ \\
& \left|\left[X_{u w}^{=}(v), Y\right]\right|+\left|\left[X_{v}^{=}(w), Y\right]\right| \\
\geq & |[u, Y]|+|[v, Y]|+ \\
& |[w, Y]|+\left|X_{v}^{=}(u)\right|+ \\
& \left|X_{u w}^{=}(v)\right|+\left|X_{v}^{=}(w)\right| \\
\geq & 3+d(u)-1+d(v)-2+ \\
& d(w)-1 \\
> & \xi_{3}(G)
\end{aligned}
$$

which is a contradiction.
(2) By item (1) we have $C-X \neq \varnothing$. Suppose that any component of $C-X$ has at most two vertices. Let $C_{1}, C_{2}, \cdots, C_{k}$ be the components of $C-X$.

Case 1. Each component C_{i} satisfies $\left|C_{i}\right|=1$.
Take C_{1} from $C_{1}, C_{2}, \cdots, C_{k}$. Let $C_{1}=\{v\}$. Then $N(v) \subseteq X$. And $\delta \geq 3$, we pick $u, w \in N(v)$, and thus $u v w$ is a 2-path in C. Arguing as item (1),
we have

$$
\begin{aligned}
\xi_{3}(G) & \geq \lambda_{3}(G) \\
& =|[X, Y]| \\
& \geq|[N(u)-v, Y]|+|[N(w)-v, Y]|+ \\
& \geq|[N(v)-u-w, Y]| \\
& \geq|N(u)-v|+|N(w)-v|+ \\
& =d(u(v)-u-w \mid \\
& \geq \xi_{3}(G) .
\end{aligned}
$$

It follows that $|[N(u)-v, Y]|=|N(u)-v|, \mid[N(v)-$ $u-w, Y]|=|N(v)-u-w|,|[N(w)-v, Y]|=$ $|N(w)-v|$ and $X=(N(u)-v) \cup(N(v)-u-$ $w) \cup(N(w)-v)$. Hence $[\{u, w\}, Y]=\varnothing$, which is a contradiction.

Case 2. There is a component C_{1} with $\left|C_{1}\right|=2$.
Assume that $V\left(C_{1}\right)=\{u, v\}$. Then $C_{1}=K_{2}$, and $N(u)-v \subseteq X, N(v)-u \subseteq X$. Take $w \in$ $X \cap(N(v)-u)$. Then $u v w$ is a 2-path in C. As $g \geq 6$, arguing as in (1), we have

$$
\begin{aligned}
\xi_{3}(G) & \geq \lambda_{3}(G) \\
& =|[X, Y]| \\
& \geq|[N(u)-v, Y]|+|[N(v)-u-w, Y]|+ \\
& |[(N(w)-v) \cap X, Y]|+|[w, Y]| \\
& =d(u)+d(v)+d(w)-4 \\
& \geq \xi_{3}(G) .
\end{aligned}
$$

It follows that $|[N(u)-v, Y]|=|N(u)-v|, \mid[N(v)-$ $u-w, Y]|=|N(v)-u-w|,|[(N(w)-v) \cap X, Y]|=$ $|(N(w)-v) \cap X|$ and $X=(N(u)-v) \cup(N(v)-u-$ $w) \cup((N(w)-v) \cap X) \cup\{w\}$. Therefore, for any $x \in$ $(N(u)-v) \cup(N(v)-u-w) \cup((N(w)-v) \cap X)$, we have $|[x, Y]|=1$. Since $g \geq 6$ and $\delta \geq 3$, it follows that $N(x) \cap(X-x)=\varnothing$. So x is adjacent to some C_{i} 's $(2 \leq i \leq k)$. If there is a $C_{i}=\{y\}$ such that $y \in$ $N(x)$, then $N(y) \subseteq X$. As $g \geq 6$ and $\delta \geq 3$, we have $|N(y) \cap(N(u)-v)| \leq 1,|N(y) \cap(N(v)-u)| \leq 1$ and $|N(y) \cap(N(w) \cap X)| \leq 1$.

Without loss of generality, we assume that $|N(y) \cap(N(w) \cap X)|=1$, then $N(y) \cap(N(v)-u)=$ $\varnothing,\{u, v\} \nsubseteq N(y)$, and we have $\mid N(y) \cap(N(u)-$ $v) \mid \geq 2$. There is a cycle with length smaller than g, a contradiction. If $|N(y) \cap(N(w) \cap X)|=0$, then $|N(y) \cap(N(u)-v)| \geq 2$ or $|N(y) \cap(N(v)-u)| \geq 2$. There is also a cycle of length smaller than g, which is impossible.

If there is a $\left|C_{j}\right|=2$ which x is adjacent to, then it is analogous to the case of $\left|C_{i}\right|=1$. We discuss the neighbors of each vertex in C_{j}, we can obtain the required result.

Recall that in the line graph $L(G)$ of a graph G, each vertex represents an edge of G, and two vertices in a line graph are adjacent if and only if the corresponding edges of G are adjacent. Let us consider the edges $x_{1} y_{1}, x_{2} y_{2} \in E(G)$. The distance between the corresponding vertices of $L(G)$ satisfies
$d_{L(G)}\left(x_{1} y_{1}, x_{2} y_{2}\right)=d_{G}\left(\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}\right)+1$,
which is useful to prove that $D(G)-1 \leq D(L(G)) \leq$ $D(G)+1$.

3 Some sufficient conditions for graphs to be super- λ_{3} (resp. super-

 κ_{3})Now, we will show Theorem 3.1 by contradiction.
Theorem 3.1. Let G be a connected graph with girth $g \geq 4$ and minimum degree $\delta \geq 3$. The following assertions hold:
(1) If $D(G) \leq g-4$, then G is super $-\lambda_{3}$.
(2) If $D(G) \leq g-5$, then G is super- κ_{3}.
(3) If the diameter of the line graph $D(L(G)) \leq$ $g-4$, then G is super- λ_{3}.
(4) If the diameter of the line graph $D(L(G)) \leq$ $g-5$, then G is super- κ_{3}.

Proof. Since $g \geq 4$, clearly G is different from the graphs in Fig.1. Thus, by Theorem 1.1, G is $\lambda_{3}{ }^{-}$ connected. Moreover, if $g \in\{4,5,6\}$, then theorem clearly holds. So we assume that $g \geq 7$. By part (2) of Theorem 1.2, G is κ_{3}-connected.
(1) From Theorem 1.2 it follows that $\lambda_{3}=\xi_{3}$. Assume that G is not super- λ_{3}. Let $[V(C), V(\bar{C})]=$ $[X, Y]$ be a λ_{3}-cut with $|V(C)| \geq 4,|V(\bar{C})| \geq 4$. By Lemma 2.2 we know that both $C-X$ and $\bar{C}-Y$ contain a connected component say H and K, respectively, of cardinality at least three vertices. Hence both X and Y are cutsets with $|X|,|Y| \leq \xi_{3}(G)$. From Lemma 2.1 there exist two vertices $u \in V(H)$ and $\bar{u} \in V(K)$ such that $g-4 \geq D(G) \geq d(u, \bar{u}) \geq$ $d(u, X)+1+d(\bar{u}, Y) \geq 2\lfloor(g-4) / 2\rfloor+1$, which is a contradiction if g is even.

And for g odd all the inequalities become equalities. This means that $\max \{d(u, X): u \in V(H)\}=$ $(g-5) / 2$ and $\max \{d(\bar{u}, Y): \bar{u} \in V(K)\}=(g-$ 5)/2. Thus by Lemma 2.1, we can find $u \in V(H)$ with $d(u, X)=(g-5) / 2$ such that $N_{(g-5) / 2}(u) \cap$ $X=\{x\}$ for some $x \in X$; and we can find $\bar{u} \in V(K)$ with $d(\bar{u}, Y)=(g-5) / 2$ such that $N_{(g-5) / 2}(\bar{u}) \cap Y=\{\bar{x}\}$ for some $\bar{x} \in Y$. As $d(u, \bar{u})=g-4$, it follows that $x \bar{x} \in[X, Y]$. Clearly we can find a vertex $v \in N(u)$ with $d(v, X)=$
$(g-5) / 2$, because otherwise $\left|N_{(g-5) / 2}(u) \cap X\right| \geq$ $|N(u)| \geq 2$. Since $d(v, \bar{u})=g-4$ we must have $x \in N_{(g-5) / 2}(v)$ or $\bar{x} \in N_{(g-3) / 2}(v)$. As a consequence, the path from u to \bar{x} together with the path from v to \bar{x} and the edge $u v$ form a cycle of length at most $g-2$, which is a contradiction.
(2) From Theorem 1.2 it follows that $\kappa_{3}=\xi_{3}$. Assume that G is not super- κ_{3}. Let X be an any $\kappa_{3}{ }^{-}$ cut and consider two connected components C, \bar{C} of $G-X$ with $|V(C)| \geq 4,|V(\bar{C})| \geq 4$. From Lemma 2.1 there exist two vertices $u \in V(C)$ and $\bar{u} \in V(\bar{C})$ such that $g-5 \geq D(G) \geq d(u, \bar{u}) \geq d(u, X)+$ $d(\bar{u}, X) \geq 2\lfloor(g-4) / 2\rfloor$, which is a contradiction if g is even.

And for g odd all the inequalities become equalities. This means that $\max \{d(u, X): u \in V(C)\}=$ $(g-5) / 2$ and $\max \{d(\bar{u}, Y): \bar{u} \in V(\bar{C})\}=(g-5) / 2$. Thus by Lemma 2.1, we can find $u \in V(C)$ with $d(u, X)=(g-5) / 2$ such that $N_{(g-5) / 2}(u) \cap X=$ $\{x\}$ for some $x \in X$; and we can find $\bar{u} \in V(\bar{C})$ with $d(\bar{u}, Y)=(g-5) / 2$ such that $N_{(g-5) / 2}(\bar{u}) \cap Y=\{\bar{x}\}$ for some $\bar{x} \in Y$. As $d(u, \bar{u})=g-5$, it follows that $x=\bar{x}$. Clearly we can find a vertex $v \in N(u)$ with $d(v, X)=(g-5) / 2$. Since $d(v, \bar{u})=g-5$ we must have $x \in N_{(g-5) / 2}(v)$. As a consequence, the path from u to x together with the path from v to x and the edge $u v$ form a cycle of length at most $g-4$, which is a contradiction.
(3) Since $D(L(G)) \leq g-4$, then the diameter $D(G) \leq g-3$, which means that $\lambda_{3}=\xi_{3}$ by Theorem 1.2. Assume that G is not super- λ_{3}. Let $[V(C), V(\bar{C})]=[X, Y]$ be a λ_{3}-cut with $|V(C)| \geq$ $4,|V(\bar{C})| \geq 4$. By Lemma 2.2 we know that both $C-X$ and $\bar{C}-Y$ contain a connected component say H and K, respectively, of cardinality at least three. Hence both X and Y are cutsets with $|X|,|Y| \leq \xi_{3}(G)$. From Lemma 2.1 there exists an edge $u v$ in $C-X$ and there exist an edge $\bar{u} \bar{v}$ in $\bar{C}-Y$ satisfying $d(\{u, v\}, X) \geq\lfloor(g-4) / 2\rfloor$ and $d(\{\bar{u}, \bar{v}\}, Y) \geq\lfloor(g-4) / 2\rfloor$. Then by using (6) we have

$$
\begin{aligned}
g-4 & \geq D(L(G)) \\
& \geq d_{L(G)}(u v, \bar{u} \bar{v}) \\
& =d_{G}(\{u, v\},\{\bar{u}, \bar{v}\})+1 \\
& \geq d_{G}(\{u, v\}, X)+1+ \\
& \geq d_{G}(Y,\{\bar{u}, \bar{v}\})+1 \\
& \geq 2\lfloor(g-4) / 2\rfloor+2
\end{aligned}
$$

which is impossible.
(4) Now $D(L(G)) \leq g-5$. Thus the diameter $D(G) \leq g-4$, which means that $\kappa_{3}=\xi_{3}$ by Theorem 1.2. Assume that G is not super- κ_{3}. Let X be an any κ_{3}-cut and consider two connected components
C, \bar{C} of $G-X$ with $|V(C)| \geq 4,|V(\bar{C})| \geq 4$. From Lemma 2.1 there exists an edge $u v$ in $C-X$ and there exists an edge $\bar{u} \bar{v}$ in $\bar{C}-X$ satisfying $d(\{u, v\}, X) \geq$ $\lfloor(g-4) / 2\rfloor$ and $d(\{\bar{u}, \bar{v}\}, X) \geq\lfloor(g-4) / 2\rfloor$. Then by using (6) we have

$$
\begin{aligned}
g-5 & \geq D(L(G)) \\
\geq & d_{L(G)}(u v, \bar{u} \bar{v}) \\
& =d_{G}(\{u, v\},\{\bar{u}, \bar{v}\})+1 \\
\geq & d_{G}(\{u, v\}, X)+d_{G}(X,\{\bar{u}, \bar{v}\}) \\
& +1 \\
\geq & 2\lfloor(g-4) / 2\rfloor+1
\end{aligned}
$$

which is impossible.

4 Connectivity of transformation graphs

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$. We suppose $V_{1}=\left\{x_{1}, \cdots, x_{n}\right\}$ and $V_{2}=\left\{y_{1}, \cdots, y_{n}\right\}$. We define $G=G_{1} \oplus G_{2}: V(G)=V_{1} \cup V_{2}$, $E(G)=E_{1} \cup E_{2} \cup\left\{x_{i} y_{i}: i=1, \cdots, n\right\}$. We have $\delta(G)=\min \left\{\delta\left(G_{1}\right)+1, \delta\left(G_{2}\right)+1\right\}$.

Theorem 4.1. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be connected graphs. And $\lambda\left(G_{1}\right)=\delta\left(G_{1}\right), \lambda\left(G_{2}\right)=$ $\delta\left(G_{2}\right)$. Then $\lambda(G)=\delta(G)$.

Proof. We assume $\lambda(G)<\delta(G)$. There exists an edge cut F such that $|F|=\lambda(G)$ and $F=[X, \bar{X}]$, where $X \subseteq V(G)$ and $\bar{X}=V(G)-X$.

Case 1. $X \subseteq V_{1}$ or $X \subseteq V_{2}$.
We can see Fig. 2 for illustration.

Fig. 2
We assume $X \subseteq V_{1}$. Then

$$
\begin{aligned}
\delta(G) & >|[X, \bar{X}]| \\
& =\left|\left[X, V_{1}-X\right]\right|+\left|\left[X, V_{2}\right]\right| \\
& \geq \lambda\left(G_{1}\right)+1 \\
& =\delta\left(G_{1}\right)+1
\end{aligned}
$$

a contradiction.

Case 2. $X_{1}=X \cap V_{1} \neq \varnothing$ and $X_{2}=X \cap V_{2} \neq$ \varnothing.

Set $\bar{X}_{1}=V_{1}-X_{1}$ and $\bar{X}_{2}=V_{2}-X_{2}$. We can see Fig. 3 for illustration.

We have

$$
\begin{aligned}
\delta(G) \geq & |[X, \bar{X}]| \\
= & \left|\left[X_{1}, \bar{X}_{1}\right]\right|+\left|\left[X_{2}, \bar{X}_{2}\right]\right| \\
& +\left|\left[X_{1}, \bar{X}_{2}\right]\right|+\left|\left[X_{2}, \bar{X}_{1}\right]\right| \\
\geq & \lambda\left(G_{1}\right)+\lambda\left(G_{2}\right) \\
\geq & \delta\left(G_{1}\right)+1
\end{aligned}
$$

a contradiction.
Both of two cases we are done.

The hypercube $Q_{n}=(V, E)$ with $|V|=2^{n}$ and $|E|=n 2^{n-1}$. Every vertex can be represent by an n bit binary string. Two vertices are adjacent if and only if their binary string representation differs in only one bit position. The hypercube $Q_{n}=Q_{n-1} \oplus Q_{n-1}$.

By Theorem 4.1 we have the following result.
Corollary 4.2. $\lambda\left(Q_{n}\right)=\delta\left(Q_{n}\right)=n$.
Theorem 4.3. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be connected graphs. And G_{1}, G_{2} are super- λ, $\delta\left(G_{1}\right) \geq 2, \delta\left(G_{2}\right) \geq 2$. Then $G=G_{1} \oplus G_{2}$ is superλ.

Proof. By contradiction. We assume $\delta\left(G_{1}\right) \leq \delta\left(G_{2}\right)$. And $\delta(G)=\lambda(G)$ by Theorem 4.1. Suppose that $G=G_{1} \oplus G_{2}$ is not super- λ. Then there is an edge cut F with $|F|=\delta(G)=\lambda(G)$ such that $G-F$ is not connected but has no isolated vertex. Thus each component of $G-F$ has at least two vertices.

We assume $F=[X, \bar{X}]$, where $X \subseteq V(G)$ and $\bar{X}=V(G)-X$.

Case 1. $X \subseteq V_{1}$ or $X \subseteq V_{2}$.
We assume $X \subseteq V_{1}$. We can see Fig. 4 for illustration.

Fig. 4
Then

$$
\begin{aligned}
\delta(G) & =|[X, \bar{X}]| \\
& =\left|\left[X, V_{1}-X\right]\right|+\left|\left[X, V_{2}\right]\right| \\
& \geq \lambda\left(G_{1}\right)+\lambda\left(G_{2}\right) \\
& =\delta\left(G_{1}\right)+\delta\left(G_{2}\right) \\
& \geq \delta\left(G_{1}\right)+2
\end{aligned}
$$

a contradiction.
Case 2. $X_{1}=X \cap V_{1} \neq \varnothing$ and $X_{2}=X \cap V_{2} \neq$ \varnothing.

Set $\bar{X}_{1}=V_{1}-X_{1}$ and $\bar{X}_{2}=V_{2}-X_{2}$. We can see Fig. 5 for illustration.

We have

$$
\begin{aligned}
\delta(G)= & |[X, \bar{X}]| \\
= & \left|\left[X_{1}, \bar{X}_{1}\right]\right|+\left|\left[X_{2}, \bar{X}_{2}\right]\right| \\
& +\left|\left[X_{1}, \bar{X}_{2}\right]\right|+\left|\left[X_{2}, \bar{X}_{1}\right]\right| \\
\geq & \lambda\left(G_{1}\right)+\lambda\left(G_{2}\right) \\
= & \delta\left(G_{1}\right)+\delta\left(G_{2}\right) \\
\geq & \delta\left(G_{1}\right)+2,
\end{aligned}
$$

a contradiction.
Both of two cases we are done.

Acknowledgements: The project is supported by NSFC (No.11301440,11301217,11301085). We would like to thank the referees for kind help and valuable suggestions.

References.

[1] C. Balbuena, P. Garcia-Vázquez, X. Marcote, Sufficient conditions for λ^{\prime}-optimality in graphs with girth g, J. Graph Theroy 52, 2006, pp. 7386.
[2] C. Balbuena, Y. Lin, M. Miller, Diametersufficient conditions for a graph to be superrestricted connected, Discrete Appl. Math. 156, 2008, pp. 2827-2834.
[3] C.J. Colbourn, The combinatorics of network reliability, New York-Oxford-Oxford University Press 1987.
[4] A. Esfahanian, S. Hakimi, On computing a condintional edge connectivity of a graph, Inform. Process. Lett. 27, 1988, pp. 195-199.
[5] J. Fábrega, M.A. Foil, Extraconnectivity of graphs with large girth, Discrete Math. 127, 1994, pp. 163-170.
[6] L. Guo, W.Yang, X. Guo, On a kind of reliability analysis of networks, Applied Mathematics and Computation 218, 2011, pp. 2711-2715.
[7] L. Guo, J.X. Meng, 3-restricted connectivity of graphs with given girth, Appl. Math. J. Chinese Univ. Series B 23(3), 2008, pp. 351-358.
[8] L. Guo, X. Guo, Connectivity of the Mycielskian of a digraph, Applied Mathematics Letters 22, 2009, pp. 1622-1625.
[9] L. Guo, C. Qin, X. Guo, Super connectivity of Kronecker products of graphs, Information Processing Letters 110, 2010, pp. 659-661.
[10] L. Guo, R. Liu, X. Guo, Super connectivity and super edge connectivity of the Mycielskian of a graph, Graph and Combinatorics 28, 2012, pp. 143-147.
[11] L. Guo, Weihua Yang, Xiaofeng Guo, Super connectivity of Kronecker products of split graphs, powers of cycles, powers of paths and complete graphs, Applied Mathematics Letters 26, 2013, pp. 120-123.
[12] J.X.Meng, Y.H.Ji, On a kind of restricted edge connectivty of graphs, Discrete Applied Math. 117, 2002, pp. 183-193.
[13] L.Shang, H.Zhang, Sufficient conditions for graphs to be λ^{\prime}-optimal and super- λ^{\prime}, Networks 49(3), 2007, pp. 234-242.
[14] A.Hellwig, L.Volkmann, Maximally edgeconnected and vertex-connected graphs and digraphs: A survey, Discrete Math. 308, 2008, pp. 3265C3296.
[15] S.Wang, S.Lin, Sufficient conditions for a graph to be super restricted edge connected, Networks 51(3), 2008, pp. 200-209.
[16] Y. Wang, Q. Li, Upper bound of the third edgeconnectivity of graphs, Science in China Ser. A Mathematics 48(3), 2005, pp. $360 \ngtr 371$.
[17] M. Wang, Q. Li, Conditional edge connectivity properties, reliability comparison and trasitivity of graphs, Discrete Math. 258, 2002, pp. 205214.
[18] J.M.Xu, K.L.Xu, On restricted edge connectivity of graphs, Discrete Math. 243, 2002, pp. 291298.
[19] Z. Zhang, J.J. Yuan, Degree conditions for retricted edge connectivity and isoperimetric-edgeconnectivity to be optimal, Discrete Math. 307, 2007, pp. 293-298.

