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Abstract: Let G = (V, E) be a connected graph. Let G = (V, E) be a connected graph. An edge set F' C E is said
to be a k-restricted edge cut, if G — F' is disconnected and every component of G — F' has at least k vertices. The
k-restricted edge connectivity of G, denoted by \;(G), is the cardinality of a minimum k-restricted edge cut of G.
A graph G is \p-connected, if G contains a k-restricted edge cut. A \;-connected graph G is called Ax-optimal,
if \p(G) = & (G), where §(G) = min{|[U,V — U]| : U C V,|U| = k and G[U] is connected}.An vertex set
X is a k-restricted cut of G, if G — X is not connected and every component of G — X has at least k& vertices.
The k-restricted connectivity k(G) (in short ky) of G, is the cardinality of a minimum k-restricted cut of G. A
Ag-connected graph G is said to be super-Ag, if G is A\i-optimal and every minimum k-restricted edge cut isolates
a component with exactly & vertices. A kj-connected graph G is said to be super-ky, if k3(G) = &3(G) and the
deletion of each minimum k-restricted cut isolates a component with exactly k vertices. In this paper, we study the
restricted edge connectivity and restricted connectivity of graphs, line graphs and a kind of transformation graphs.

Key—Words: 3-Restricted edge connectivity; Super-\s; Super-+3

1 Introduction In this paper, we only consider simple graphs.
Let G = (V,E) be a connected graph. For a ver-
tex v € V, N(v) is the set of all vertices adjacent
to v. The degree of a vertex v, denoted by d(v), is

It is well known that graph theory plays a key role
in the analysis and design of reliable or invulnerable

networks. A network is often modeled by a graph the size of N(v). If u,v € V, then d(u,v) denotes
G = (V, E) with the vertices representing nodes such the length of a shortest (u,v)-path. For X,Y C V,
as processors or stations, and the edges representing d(X,Y) denotes the distance between X and Y'; more
links between the nodes. One fundamental consider- formally, d(X,Y) = min{d(z,y) : for any z €
ation in the design of networks is reliability. When Xandanyy € Y} . Ifv € V,r > 0is an integer,
studying network reliability, we consider the follow- then let N, (v) = {w € V : d(w, vj = 7}, in partic-
ing model [3]. Let G = (V, E) be a graph with the ular, N1 (v) = N(v). For X € V, No(X) = {w €
vertices reliable, but the edges may fail independently V @ d(w,X) = r} where d(w, X) = d({w}, X),

with the same p.rob.a.bilit[y p € (0, 1)..(.)ne measure of and N1(X) = N(X). We denote the diameter and
the network reliability is the probability P(G) of G girth by D and g, respectively, and write G — v for

being disconnected: G — {v}. A path is called k-path, if its length is k.
. , . For U C V, G[U] is the subgraph of G induced by

— . i1 _ A\e—1 =
P(G) =2 iy mai(G)p' (L = p) the vertex subset U, and [U, V — U] is the set of edges

with one end in U and the other in V' — U. And & (G)

where € is the number of edges in G, m;(G) is —min{|[U,V — U] : U C V,|U| = k and G[U] is

the number of edge cuts of size i, A\ is the edge

connectivity. P(G) is a polynomial on variable p, connected}.

and is called unreliability polynomial. The smaller Recall that for every graph G we have A < 4,
P(G) is, the more reliable is the network. In gen- where ¢ is the minimum degree of G. If A\ = 4,
eral, to determine P(G) is difficult[3]. When p then G is said to be mazimally edge connected or
is sufficiently small, the minimum of P(G) can be A-optimal. A graph G is super edge connected, or
obtained by maximizing A first and then minimiz- simply super-, if every minimum vertex cut is the
ing my(G),mx+1(G),--- ,m(G) sequentially [17]. neighbors of a vertex of GG, that is every minimum ver-
Connectivity is a parameter to measure the reliability tex cut isolates a vertex. In the definitions of A(G), no
of networks. restrictions are imposed on the components of G — S,
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where S is an edge cut. To compensate for this short-
coming, it would seem natural to generalize the notion
of the classical connectivity by imposing some condi-
tions or restrictions on the components of G — S. Fol-
lowing this idea, k-restricted edge connectivity were
proposed in [4,5]. An edge set I' C E is said to be
a k-restricted edge cut, if G — F' is disconnected
and every component of G — F has at least k vertices.
The k-restricted edge connectivity of G, denoted
by A\i(G), is the cardinality of a minimum k-restricted
edge cut of G. If |F| = Ag, then F is called a \j-
cut. Not all connected graphs have Ag-cuts (k > 2),
for example K1 ,—1. A graph G is A\j-connected, if
G contains a k-restricted edge cut. A Ag-connected
graph G is called A\;-optimal, if A\, (G) = &k(G).

An vertex set X is a k-restricted cut of G, if G—
X is not connected and every component of G— X has
at least k vertices. The k-restricted connectivity
ki (G) (in short ki) of G, is the cardinality of a min-
imum k-restricted cut of G. And X is called a xj-
cut, if | X| = kg. Not all connected graphs have k-
cuts (k > 2), for example Ky ,,—1. A graph G is k-
connected, if a kj-cut exists. For £ = 1, 2 we can see
[1, 2, 8-15,18,19]. We will study the case of k = 3.

For X Cc V,v € V\ X and u € N(v). Let us
introduce the sets

XFw) = {ze Nw)—u:d(z,X) =d(v, X)
+1}

X, (v) {zeNw)—u:d(zX)=dv,X)};

X, (v) {ze Nw)—u:d(z,X)=d(v,X)

-1}
Clearly, X,/ (v), X (v) and X, (v) form a partition
of N(v) — u. And | X;F (v)| + | X (v)| + | X, (v)| =
d(v) — 1. If d(v) > 2, u,w € N(v), then

Xh () = {z€ Nw) —{u,w}:d(z,X) =
d(v, X) + 1};
Xow@®) = {z€Nw) —{u,w}:d(z,X) =
d(v, X)};
X)) = {z€N(Ww)—{u,w}:d(z,X) =
d(v, X) —1}.
Then X! (v), X, (v) and X, (v) form a parti-

tion of N(v) — {u, w}, and | X7, (v)] + | X5, (v)| +
| X, (0)] = d(v) 2.

Wang et al.[16] obtain the following result for
A3(G).

Theorem 1.1. Let G be a simple connected graph of
order n > 6. If G is not a subgraph of any of the
graphs shown in Fig.1, then both \3(G) is well de-
fined and \3(G) < &3(G).
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(a)

(b)
Fig. 1

(c)

From this theorem we can see that if G is a con-
nected graph with girth ¢ > 4 and 6 > 3, then G has
3-restricted edge cuts.

We also have the following results for A3(G) and
Hg(G).

Theorem 1.2. (1) [6] Let G be a A3-connected graph
with girth g > 4, minimum degree § > 3 and diameter
D. If D < g — 3, then G is A3-optimal.

(2) [7] Let G be a connected graph with
girth g > 6, and minimum degree § > 3. Then G
is k3-connected and k3(G) < £3(G), if g > Tor § >
4.

(3) [7] Let G be a k3-connected graph with girth
4, minimum degree § > 3 and diameter D. If
g — 4, then k3(G) = &3(G).

In this paper, we investigate super- A3 connectivity
and super-x3 connectivity of graphs with girth g > 4
and minimum degree 6 > 3. We also study the con-
nectivity of a kind of transformation graphs. Some
sufficient conditions for the graphs to be super-\3
(resp. super-x3) are given in Theorem 3.1, which de-
pends on diameters of the graphs and their line graphs.

In Section 2 we shall give some properties of 3-
restricted edge cuts and 3-restricted cuts of graphs, in
Section 3 we prove the sufficient conditions in The-
orem 3.1 for graphs to be super-As (resp. super-x3).
In Section 4 we study the edge connectivity and super
edge connectivity of a kind of transformation graphs.

gz
D <

2 Properties of 3-restricted edge cuts
and 3-restricted cuts of graphs

If G is a graph with girth g > 4, then every con-
nected subgraph of G with three vertices is a path xyz
of length two. Thus, &3(G) = min{d(z) + d(y) +
d(z) — 4 : xyz is a path of length two in G'}.

Lemma 2.1. Let G be a connected graph with
girth g > 4, minimum degree 6 > 3 and £3(G). Let
X C V be a vertex cut with | X| < &(G) and C be
any connected component of G — X with |V (C)| > 3.
Then the following assertions hold:

(1) There exists an edge wv in C such that

d({u, v}, X) > (9 —4)/2].
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(2) If g is odd and |V (C)|
tex u € C with d(u, X)
|N(g—5)/2(u) N X| < 1.

4, then there is a ver-
(9 — 5)/2 such that

ALY

Proof. For g = 4, 5,6, both assertions of the lemma
hold, since d(u, X) > 1 forall win C and |V (C)| >
3. So suppose that g > 7 and let 4 = maz{d(u, X) :
u € V(C)}. Notethat p > 1. If p > [(g — 2)/2],
then both assertions clearly hold. Thus, we assume
that 11 < | (g — 4)/2).

(1) If = 1, then the result holds. Thus assume
that p > 2.

Claim 1. There is an edge wv in C' such that

d({u,v}, X) =

We argue by contradiction. Suppose that each
vertex uin C atd(u, X ) = p satisfies d(v, X) = p—1
forallv € N(u). As 6 > 3, take w,v € N(u), then
vuw is a 2-path in C. Thus d(v, X) = d(w, X) =
u — 1. Each vertex in N(X;[(w)) and N (X, (v))
is at distance p© — 1 from X. Moreover, we have
IN,—1(X; (w)) N X| > | X (w)|. Otherwise, there
are two vertices x1,z2 € X (w) both at distance
p—1fromavertex z € N,_1(X, (w))NX. There is
a cycle going through {x1, w, x2, x} of length at most
2u < 2[(g — 4)/2] < g — 4, contrary to the fact
that the length of a shortest cycle in G is equal to g.
Similarly, we have

N,
‘Nu 1
|Nu 1

~1(N(u) —v—
(X
(X
|Np—1(w
(
(
(

() N X[ > [X (v)],

(w)) N X| > [X, (w)],

X[ > [Xy (w)],

X[ =X, ()],

(X (w)) —w) NX] > X, (w)],
(X (v) —v) N X| > [X;](v)].

)N

‘Nu 1(v) N
‘Nu 1

N
IN,_1(N

Likewise, the sets N, 1 (X, (w))NX, N,—1(N(u) —
v — w) N X,N,1(X;(v) N X,Ny—1(w) N
X, N1 (v) N X, N, (N(X; (w)) — w) N X, and
Ny —1(N(X,(v)) N X are pairwise disjoint.
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Hence we have

£3(G)

Vv v

Y

| Xo (w)] + X, (w)] +

[ X ()] + [N (1) —v —w| +

| X0 ()] + X, (w)]

+X (v)]

d(u) + d(w) + d(v) —

&(G).

Thus, the above inequalities become equalities, yield-
ing

Y

X = (Nya(Xg(w)nXx)u
(Ny—1(N(u) —v—w)NX)
(Nu—1(Xy (v)) N X)
U(Nu-1(w) N X) U (N1 (v) N X)
U(Nu—1 (N(X (w) —w) N X) U
(Nu1t(N(X (v) —0) N X). (1)
And
[Nyt (N () = v —w) N X| = [N () — v — wl;
[Nu—1(N (X (w)) —w) N X| =
[N (X (w)) — w| = | X (w)];
[Nu—1(N (X (v) = v) N X| = [N(X; (v)) = 0]
=X, (v)]- (2)

From (2) it follows that if | X, (w)| > 0, then every
vertex y € X, (w) has degree 2, which contradicts to
the fact that 6 > 3. Then X,/ (w) = @. Similarly,
X, (v) = @. Furthermore, (2) also implies that each
vertex © € N(u) — v — w has one unique neighbor in
X at distance p — 1, that is, | X, (z)| = 1. Similarly,
for the edge uxz we obtain that X, (x) = &, which
implies that X[ (z) # @ because 6 > 3. Take a vertex
' € X (x), from (1) we conclude that there is a
cycle passing through {2/, x,u} and the vertex y €
N,—1(z")N X of length at most 2(p— 1) +4 < g—1,
then there would be a cycle of length less than g, a
contradiction.

Claim 2. > [(g — 4)/2].

By contradiction, suppose that 4 < |[(g—4)/2| —
1. From Claim 1 we know there is an edge uv in C
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such that d({u,v}, X) = p. In this case, X, (v) =
X.F(u) = @. Then C has a 2-path uvw such that
dw,X)=pordw,X)=pn—1.

Firstly, assume that d(w,X) = p. Thus
we have X, (w) = @. Arguing as in Claim
1 we have |N,(Xg,(v)) N X| | X (V)| and
IN,(v) N X| > |Xg,(v)]. Furthermore, the
sets N, (X, (v)) N X, Ny(v) N X, N, (X7 (uw) N
X,N,(u)N X, N, (X, (w))NX and N, (w) N X are
pairwise disjoint. Therefore we have

&(G) | X

[Nu( X (v)) N X[+ [Ny(v) N X|
[Nu(Xy (w) N X+ [Ny(u) N X|
[Nu(Xy (w)) N X[+ [Ny(w) N X|
| X (V)] + [ X (V)| +
[ X5 (W) + X, (w)] +
X, ()] + | X (w)]
d(u) + d(w) + d(v) —

£3(G).

Thus, the above inequalities become equalities, yield-
ing

vV + + IV IV

v

X = (Nu(Xp(0)) N X) U (Ny(v) N X) U
(N (X5 (1)) N X) U (Ny(u) N X) U
(N (X, (w)) N X) U (Nyu(w) N X)) (3)
and
‘NH(Xu:w(v)) DX‘ - ‘Xu:w(v)‘:
[N (X, () N X = [ X ()],
[N (X5 (w) 0 X = [ X5 (w)]. (4)

From (4) we know that every vertex z € X_. (v) U
X (u) U X (w) has a unique neighbor at distance p
in X. As § > 3, there exists a vertex 2z’ € N(z) N
N, (X) and 2’ € {u,v,w}, forevery z € X, (v) U
X, (u) U X (w). From (3) it follows that there is a
cycle of length at most 2u+5 < g — 1, contrary to the
fact that the length of a shortest cycle in G is equal to
g.

Secondly if d(w, X') = p— 1, then it is analogous
to the case of d(w, X) = u

As a consequence of both Claim 1 and Claim 2
we conclude that there exists an edge uv in C' such
that d({u, v}, X) > (g — 4)/2].

(2) Suppose now that © = (g — 5)/2 otherwise
by item (1) we are done. And we denote C'x = {u €
V(C) : d(u,X) = (¢ — 5)/2}. By item (1) we can
take an edge uv in G[Cx].

Firstly, assume (N (u) —v)NCx # @ or (N (v)—
u) N Cx # &, say, (N(v) —u) N Cx # &. Notice
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that XM (u) = X\ (w) = X}, (v) = @ and that the

sets X7 (u), X, (u), X~ (w), X, (w), X, (v)  and
X, (v) are pairwise disjoint. We will prove it by con-
tradiction.

By contradiction, suppose that any vertex
u in Cx satisfies [N, 5)/2( u) N X| > 2
Then we have |N(g 52X, (W) N X[ >
20X ()], [Nigs5)/o(X e (0)) O X[ > 2 X5, (0],
and TNy sy (Xo () T X| 2 2/X7 (w)].

Since
the sets N(g_5)/2(X (u)) N X, Ng 7/2( o (u) N
X, Nig-5)/2(Xe(v)) N X, Ng7)/2(Xy(v)) N
X, Nig—5)2(X5 (w))NX and N7y ;o( X, (w))NX

are pairwise disjoint, it follows that

&(G) >
2 ‘N(g,g; /2 X,

\%
iS)
s

2| Xy (0)] + [ X (0)| +
21X, (w)] + [X, (w)]
&(G) + [ X, (w)] +

[ X (V)] + [ X5 (w)]

Xz (0) = X5 (w) =

5)/2(1) N X) U (Nig—s)/2(v) N X) U
5)/2(w) N X). (5)

Furthermore, we can obtain |N(,_z)/9(u) N X| =
Xy ()], [Ng—s)2(v) N X| = |X;,(v)| and
|N(g—5)/2(w) N X| = [X; (w)[. This means that
w=(g—5)/2>2. Asd > 3, we have [N(z) N
(Cx —w)| > d(z) —2 > 1forall z € X, (u)
(Otherwise a cycle of length at most g — 2 would ap-
pear). Take a vertex z € X, (u) and consider a vertex
2" € N(2)N(Cx —u). Then from (5) a cycle of length
at most g — 1 would appear, a contradiction.
Secondly, if (N (u) —v)NCx = @ and (N (v) —
u) N Cx = o, then take a vertex w in N(v) with
d(w, X) = (g — 7)/2. Hence uvw is a 2-path in C, it
is analogous to the above case. 0

v

Then X (u) = @ and

X = (N,

(N(g—

Let G = (V,E) be a As-connected graph. An
arbitrary \z-cut F' can be denoted by [V (C), V(C)],
where C and C are the only two components of G —F.
There are X C V(C)andY C V(C) such that X UY
is the set of the end vertices of [V (C), V(C)], and so
V() V(O)] = [X,Y].
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A A3-connected graph G is said to be super-As, if
(G is A\z-optimal and every minimum 3-restricted edge
cut isolates a component with exactly three vertices.
A rk3-connected graph G is said to be super-rs, if
k3(G) = &3(G) and the deletion of each minimum 3-
restricted cut isolates a component with exactly three
vertices.

Lemma 2.2. Let G be a connected graph with girth
g > 6, and minimum degree § > 3. Let [V (C), V(C)]
= [X,Y] be a \3-cut. Then the following assertions
hold:

(1) If V(C) = X, then G is super-s.

(2) If G is not super-As, then C' — X has a component
with at least three vertices.

Proof. Since g > 6 and § > 3, by Theorem 1.1 G is
Az-connected.

(1) Suppose that V(C') = X, then each vertex of
C'is incident with some edges of [ X, Y]. If |V (C)| =
3, then we are done. So assume that |V (C)| > 4. Let
uvw be a 2-path of C'. Because § > 3, we assume
that | X~ (u)| > 1. Since girth g > 6, thus arguing as
before, we have

§3(G)

v

A3(G)
(X, Y]|
|

Y

[u, Y]| + |[v, Y]] +

[w, V]| + |[X (w), Y] +
[(Xow (0), Y] + [[X5 (w), Y]]
[w, Y[ + [[v, Y] +

[w, Y| + | X5 (w)] +

X ()| + X5 (w)]
3+d(u)—1+dw)—2+
d(w) — 1

> &§(G),

Y

Y

which is a contradiction.

(2) By item (1) we have C' — X # &. Suppose
that any component of C'— X has at most two vertices.
Let Cq, Co, - - -, C be the components of C' — X.

Case 1. Each component C; satisfies |C;| = 1.

Take Cy from C1,Co,--- ,Cy. Let C7 = {v}.
Then N(v) € X. And 6 > 3, we pick u,w € N(v),
and thus uvw is a 2-path in C. Arguing as item (1),
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we have
&(G) > A3(G)
= |[X,Y]|
> |[N(u) =0, Y][+[[N(w) —v, Y]]+
[N(v) —u—w,Y]|
> |N(u) —v| + |N(w) —v| +
IN(v) —u —wj
= d(u) +d(v) + d(w) —
> &(G).

It follows that | [N (u) —v, Y]| = |N(u)—v|,|[ (v)—
w—w,Y]| = [N(v) —u~ |, [[N(w) -~ v,Y]| =
IN(w) —v| and X = (N(u) — )U(N(v)—u—
w) U (N(w) — v). Hence [{u,w},Y] = @, which is
a contradiction.

Case 2. There is a component C; with |C| = 2.

Assume that V(C}) = {u,v}. Then C1 = Ko,
and N(u) —v € X,N(v) —u C X. Take w €
X N (N(v) — u). Then wvw is a 2-path in C. As
g > 6, arguing as in (1), we have

&(G) = A3(G)

= [[X, Y]]

> [[N(u) =0, Y][+[[N(v) —u—w,Y]|+
[(N(w) —v) N X, Y]+ [[w,Y]|

= d(u) +d(v)+dw) —

> &(G6).

It follows that | [N (u) —v, Y]| = |N(u) —v|, |[N (v) —
u—w, Y]] = [N(v) ~u—w], [[(N(w)—v)NX, V]| =
|(N(w)—v)NnX|and X = (N(u) —v)U(N(v)—u—
w)U((N(w)—v)NX)U{w}. Therefore, for any = €
(N(u)—v)U(N(w)—u—w)U((N(w)—v)NX), we
have |[z,Y]| = 1. Since g > 6 and 0 > 3, it follows
that N(xz) N (X — z) = @. So x is adjacent to some
Ci’s (2 <i<k). Ifthereisa C; = {y} such thaty €
N(z),then N(y) € X. Asg > 6and 6 > 3, we have
IN(y) N (N () = v)] < 1,IN(y) N (N(0) — )] < 1
and [N(y) N (N(w) N X)| < 1.

Without loss of generality, we assume that
[N (y)N(N(w)NX)| = 1, then N (y) (N (v) —u) =
&, {u,v} ¢ N(y), and we have |N(y) N (N(u) —
v)| > 2. There is a cycle with length smaller than g,
a contradiction. If |[N(y) N (N(w) N X)| = 0, then
[N ()N (N () —v)| > 2or [N(y) (N (0)—u)] > 2
There is also a cycle of length smaller than g, which
is impossible.

If there is a |Cj| = 2 which z is adjacent to, then

it is analogous to the case of |C;| = 1. We discuss
the neighbors of each vertex in Cj, we can obtain the
required result. O
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Recall that in the line graph L(G) of a graph G,
each vertex represents an edge of (7, and two vertices
in a line graph are adjacent if and only if the corre-
sponding edges of GG are adjacent. Let us consider the
edges z1y1, x2y2 € F(G). The distance between the
corresponding vertices of L(G) satisfies

dr@)(T1y1, 7292) = do({z1, 91}, {72, ¥2})+1,

which is useful to prove that D(G)—1 < D(L(G)) <
D(G) + 1.

3 Some sufficient conditions for
graphs to be super-)\; (resp. super-

K3)
Now, we will show Theorem 3.1 by contradiction.

Theorem 3.1. Let G be a connected graph with girth
g > 4 and minimum degree 5 > 3. The following
assertions hold:

(1) If D(G) < g — 4, then G is super-As.

(2) If D(G) < g — 5, then G is super-ks.

(3) If the diameter of the line graph D(L(G)) <
g — 4, then G is super-As.

(4) If the diameter of the line graph D(L(G)) <
g — 5, then G is super-K3.

Proof. Since g > 4, clearly G is different from the
graphs in Fig.1. Thus, by Theorem 1.1, G is As-
connected. Moreover, if g € {4,5,6}, then theorem
clearly holds. So we assume that g > 7. By part (2)
of Theorem 1.2, GG is k3-connected.

(1) From Theorem 1.2 it follows that A3 = &s.
Assume that G is not super-A3. Let [V (C),V(C)] =
[X,Y] be a A\3-cut with [V (C)| > 4, |V (C)| > 4. By
Lemma 2.2 we know that both C — X and C — Y
contain a connected component say H and K, respec-
tively, of cardinality at least three vertices. Hence both
X and Y are cutsets with | X[, |Y| < &(G). From
Lemma 2.1 there exist two vertices v € V(H) and
uw € V(K) such that g — 4 > D(G) > d(u,u) >
du, X)+1+d(w,Y) >2|(g —4)/2] + 1, which is
a contradiction if g is even.

And for g odd all the inequalities become equal-
ities. This means that max{d(u, X) : v € V(H)} =
(9 —5)/2 and max{d(uw,Y) : uw € V(K)} = (g —
5)/2. Thus by Lemma 2.1, we can find u € V(H)
with d(u, X) = (g — 5)/2 such that N(,_z)/5(u) N
X = {x} for some x € X; and we can find
u € V(K) with d(u,Y) = (g — 5)/2 such that
Nig—5)2(@) NY = {7} for some T € Y. As
d(u,u) = g — 4, it follows that 2z € [X,Y]. Clearly
we can find a vertex v € N(u) with d(v, X) =

E-ISSN: 2224-2880

(6)

446

Litao Guo, Xiaofeng Guo

(g9 — 5)/2, because otherwise |N(y_s)/2(u) N X| >
|N(u)] > 2. Since d(v,u) = g — 4 we must have
T € Nig_s)/2(v) or T € N(y_3)/5(v). As a conse-
quence, the path from u to T together with the path
from v to T and the edge uv form a cycle of length at
most g — 2, which is a contradiction.

(2) From Theorem 1.2 it follows that k3 = &3.
Assume that G is not super-x3. Let X be an any x3-
cut and consider two connected components C, C' of
G — X with |[V(C)| > 4,|V(C)| > 4. From Lemma
2.1 there exist two vertices u € V(C) andw € V(C)
such that ¢ — 5 > D(G) > d(u,u) > d(u,X) +
d(u, X) > 2| (g —4)/2], which is a contradiction if g
is even.

And for g odd all the inequalities become equal-
ities. This means that max{d(u, X) : u € V(C)} =
(9—5)/2and max{d(w,Y) : u € V(C)} = (9—5)/2.
Thus by Lemma 2.1, we can find v € V(C) with
d(u, X) = (g — 5)/2 such that N(y_5)/o(u) N X =
{x} for some z € X; and we can find w € V(C) with
d(w,Y) = (g—5)/2 such that N(,_s) o (u)NY = {T}
for some T € Y. As d(u,u) = g — 5, it follows that
x = T. Clearly we can find a vertex v € N(u) with
d(v,X) = (g —5)/2. Since d(v,uw) = g — 5 we must
have z € N4_5)/2(v). As a consequence, the path
from u to x together with the path from v to x and the
edge uv form a cycle of length at most g — 4, which is
a contradiction.

(3) Since D(L(G)) < g — 4, then the diame-
ter D(G) < g — 3, which means that A3 = {3 by
Theorem 1.2. Assume that G is not super-A3. Let
[V(C),V(C)] = [X,Y] be a A\3-cut with |V (C)| >
4,]V(C)| > 4. By Lemma 2.2 we know that both
C — X and C — Y contain a connected compo-
nent say H and K, respectively, of cardinality at
least three. Hence both X and Y are cutsets with
|X], Y] < &(G). From Lemma 2.1 there exists an
edge uv in C' — X and there exist an edge & U in
C — Y satisfying d({u,v}, X) > [(g — 4)/2] and
d({w,v},Y) > | (9 —4)/2]. Then by using (6) we
have

g—4 D(L(G))
dr(c)(uv, uv)
da({u,v}, {u,v}) + 1
de({u, v}, X)+1+
dG(Y7 {U7 W}) +1

2[(g —4)/2] +2,

AV

Y

v

which is impossible.

(4) Now D(L(G)) < g — 5. Thus the diameter
D(G) < g—4, which means that k3 = &3 by Theorem
1.2. Assume that GG is not super-x3. Let X be an
any k3-cut and consider two connected components
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C,C of G — X with |V(C)| > 4,|V(C)| > 4. From Case2. X1 =XNVi#and Xo = X NV, #
Lemma 2.1 there exists an edge uv in C'— X and there .
exists an edge v in C' — X satisfying d({u, v}, X) > Set X; = V4 — X; and X5 = V5 — X5. We can

(g —4)/2] and d({u,v}, X) > |(g — 4)/2]. Then see Fig.3 for illustration.
by using (6) we have

g—5 > D(L(G))
> dre)(uw, D)
= dG({U, U}v {ﬂv 6}) +1
> dG({ua U}a X) + dG(Xa {ﬂa E})
+1
> 2[(g—4)/2]+1,
which is impossible. O
L. . We have
4 Connectivity of transformation
graphs o(G) > [[X, X]| i
= |[X1, Xa]| + |[X2, X2
Let Gy = (Vi ) and G - (15, ). We X0, Xl + Xz, X
pose Vi = {w1, -, an} and V3 = {y1,- ,un}. >
We define G = G1 & Gy : V(G) = Vi U Va, = NG +AG)
E(G)=E UByU{awy; :i=1,---,n}. We have > 6(Gh)+ 1,
(5(G) :min{é(Gl)—l-l,(S(Gg)—l-l}. o
a contradiction.
Theorem 4.1. Let G; = (V1, E1) and Go = (Va, E») Both of two cases we are done.
be connected graphs. And \(G1) = 6(G1), A\(G2) = O
d(G2). Then \(G) = 6(Q).
Proof. We assume A\(G) < &(G). There exists an The hy_plercube Qn = (V; E) with [V] = 2" and
edge cut F such that |F| = A\(G) and F = [X, X], |E| = n2™~". Every vertex can be represent by an n-
where X C V(G) and X — V(G) - X. bit binary string. Two vertices are adjacent if and only
Case I X CVior X C V. if their binary string representation differs in only one

bit position. The hypercube @), = Qn—1 B Qpn—_1-

We can see Fig.2 for illustration. :
By Theorem 4.1 we have the following result.

Corollary 4.2. \(Q,,) = 6(Qy) = n.

Theorem 4.3. Let G1 = (V, E1) and Gy = (Va, E»)
be connected graphs. And G1,G2 are super-),
0(G1) > 2,0(Ga) > 2. Then G = G1 @ Gy is super-

Gl G2
Fig.2 Proof. By contradiction. We assume §(G1) < 6(G2).
And 6(G) = A(G) by Theorem 4.1. Suppose that
We assume X C V3. Then G = G1 ® G- is not super-A. Then there is an edge
cut F' with |F| = §(G) = A(G) such that G — F'is
- not connected but has no isolated vertex. Thus each
o(G) > |1, X]| component of G — F has at least two vertices.
= [[X,Vi = X]|+[[X, V2]| We assume F' = [X, X], where X C V(G) and
> MGp)+1 X =V(G) -X.

= §(G1) +1, Casel. X CVior X C Vs,

We assume X C V. We can see Fig.4 for illus-
a contradiction. tration.
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Gl G2
Fig.4
Then
o(G) = X, X]|
X, Vi = X]| + [[X, V2]
> AMGy) + ANGa)
= 0(G1) +6(Ga)
> §(Gh) + 2,

a contradiction.

Case2. X1 =XNVi#Zand Xo =X NVy #
.

Set X1 =V, — X; and Xy = Vo — X5. We can
see Fig.5 for illustration.

L5\ £

G, Fig.5 G,
‘We have

56) = IIX.%) _
= |[Xy, Xu]| + [[ X2, Xa|

+[[ X1, Xo]| + |[ X2, X1]]

AMG1) + AMGa)

0(G1) + 6(Ga)

8(G1) +2,

v

v

a contradiction.
Both of two cases we are done.
O
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