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Abstract: Let G = (V, E) be a connected graph. Let G = (V, E) be a connected graph. An edge set F ⊂ E is said
to be a k-restricted edge cut, if G− F is disconnected and every component of G− F has at least k vertices. The
k-restricted edge connectivity of G, denoted by λk(G), is the cardinality of a minimum k-restricted edge cut of G.
A graph G is λk-connected, if G contains a k-restricted edge cut. A λk-connected graph G is called λk-optimal,
if λk(G) = ξk(G), where ξk(G) = min{|[U, V − U ]| : U ⊂ V, |U | = k and G[U ] is connected}.An vertex set
X is a k-restricted cut of G, if G −X is not connected and every component of G −X has at least k vertices.
The k-restricted connectivity κk(G) (in short κk) of G, is the cardinality of a minimum k-restricted cut of G. A
λk-connected graph G is said to be super-λk, if G is λk-optimal and every minimum k-restricted edge cut isolates
a component with exactly k vertices. A κk-connected graph G is said to be super-κk, if κ3(G) = ξ3(G) and the
deletion of each minimum k-restricted cut isolates a component with exactly k vertices. In this paper, we study the
restricted edge connectivity and restricted connectivity of graphs, line graphs and a kind of transformation graphs.

Key–Words: 3-Restricted edge connectivity; Super-λ3; Super-κ3

1 Introduction
It is well known that graph theory plays a key role

in the analysis and design of reliable or invulnerable
networks. A network is often modeled by a graph
G = (V, E) with the vertices representing nodes such
as processors or stations, and the edges representing
links between the nodes. One fundamental consider-
ation in the design of networks is reliability. When
studying network reliability, we consider the follow-
ing model [3]. Let G = (V, E) be a graph with the
vertices reliable, but the edges may fail independently
with the same probability ρ ∈ (0, 1). One measure of
the network reliability is the probability P (G) of G
being disconnected:

P (G) =
∑ε

i=λ mi(G)ρi(1− ρ)ε−i,

where ε is the number of edges in G, mi(G) is
the number of edge cuts of size i, λ is the edge
connectivity. P (G) is a polynomial on variable ρ,
and is called unreliability polynomial. The smaller
P (G) is, the more reliable is the network. In gen-
eral, to determine P (G) is difficult[3]. When ρ
is sufficiently small, the minimum of P (G) can be
obtained by maximizing λ first and then minimiz-
ing mλ(G),mλ+1(G), · · · ,mε(G) sequentially [17].
Connectivity is a parameter to measure the reliability
of networks.

In this paper, we only consider simple graphs.
Let G = (V, E) be a connected graph. For a ver-
tex v ∈ V , N(v) is the set of all vertices adjacent
to v. The degree of a vertex v, denoted by d(v), is
the size of N(v). If u, v ∈ V , then d(u, v) denotes
the length of a shortest (u, v)-path. For X, Y ⊂ V ,
d(X, Y ) denotes the distance between X and Y ; more
formally, d(X, Y ) = min{d(x, y) : for any x ∈
X and any y ∈ Y } . If v ∈ V, r ≥ 0 is an integer,
then let Nr(v) = {w ∈ V : d(w, v) = r}, in partic-
ular, N1(v) = N(v). For X ⊂ V , Nr(X) = {w ∈
V : d(w, X) = r} where d(w, X) = d({w}, X),
and N1(X) = N(X). We denote the diameter and
girth by D and g, respectively, and write G − v for
G − {v}. A path is called k-path, if its length is k.
For U ⊆ V , G[U ] is the subgraph of G induced by
the vertex subset U , and [U, V −U ] is the set of edges
with one end in U and the other in V −U . And ξk(G)
= min{|[U, V − U ]| : U ⊂ V, |U | = k and G[U ] is
connected}.

Recall that for every graph G we have λ ≤ δ,
where δ is the minimum degree of G. If λ = δ,
then G is said to be maximally edge connected or
λ-optimal. A graph G is super edge connected, or
simply super-λ, if every minimum vertex cut is the
neighbors of a vertex of G, that is every minimum ver-
tex cut isolates a vertex. In the definitions of λ(G), no
restrictions are imposed on the components of G−S,
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where S is an edge cut. To compensate for this short-
coming, it would seem natural to generalize the notion
of the classical connectivity by imposing some condi-
tions or restrictions on the components of G−S. Fol-
lowing this idea, k-restricted edge connectivity were
proposed in [4,5]. An edge set F ⊂ E is said to be
a k-restricted edge cut, if G − F is disconnected
and every component of G−F has at least k vertices.
The k-restricted edge connectivity of G, denoted
by λk(G), is the cardinality of a minimum k-restricted
edge cut of G. If |F | = λk, then F is called a λk-
cut. Not all connected graphs have λk-cuts (k ≥ 2),
for example K1,n−1. A graph G is λk-connected, if
G contains a k-restricted edge cut. A λk-connected
graph G is called λk-optimal, if λk(G) = ξk(G).

An vertex set X is a k-restricted cut of G, if G−
X is not connected and every component of G−X has
at least k vertices. The k-restricted connectivity
κk(G) (in short κk) of G, is the cardinality of a min-
imum k-restricted cut of G. And X is called a κk-
cut, if |X| = κk. Not all connected graphs have κk-
cuts (k ≥ 2), for example K1,n−1. A graph G is κk-
connected, if a κk-cut exists. For k = 1, 2 we can see
[1, 2, 8-15,18,19]. We will study the case of k = 3.

For X ⊂ V , v ∈ V \ X and u ∈ N(v). Let us
introduce the sets

X+
u (v) = {z ∈ N(v)− u : d(z, X) = d(v, X)

+1};
X=

u (v) = {z ∈ N(v)− u : d(z, X) = d(v, X)};
X−

u (v) = {z ∈ N(v)− u : d(z, X) = d(v, X)
−1}.

Clearly, X+
u (v), X=

u (v) and X−
u (v) form a partition

of N(v)− u. And |X+
u (v)|+ |X=

u (v)|+ |X−
u (v)| =

d(v)− 1. If d(v) ≥ 2, u,w ∈ N(v), then

X+
uw(v) = {z ∈ N(v)− {u,w} : d(z, X) =

d(v, X) + 1};
X=

uw(v) = {z ∈ N(v)− {u,w} : d(z, X) =
d(v, X)};

X−
uw(v) = {z ∈ N(v)− {u,w} : d(z, X) =

d(v, X)− 1}.

Then X+
uw(v), X=

uw(v) and X−
uw(v) form a parti-

tion of N(v) − {u,w}, and |X+
uw(v)| + |X=

uw(v)| +
|X−

uw(v)| = d(v)− 2.
Wang et al.[16] obtain the following result for

λ3(G).

Theorem 1.1. Let G be a simple connected graph of
order n ≥ 6. If G is not a subgraph of any of the
graphs shown in Fig.1, then both λ3(G) is well de-
fined and λ3(G) ≤ ξ3(G).

( a ) ( b )    ( c )

Fig. 1

From this theorem we can see that if G is a con-
nected graph with girth g ≥ 4 and δ ≥ 3, then G has
3-restricted edge cuts.

We also have the following results for λ3(G) and
κ3(G).

Theorem 1.2. (1) [6] Let G be a λ3-connected graph
with girth g ≥ 4, minimum degree δ ≥ 3 and diameter
D. If D ≤ g − 3, then G is λ3-optimal.

(2) [7] Let G be a connected graph with
girth g ≥ 6, and minimum degree δ ≥ 3. Then G
is κ3-connected and κ3(G) ≤ ξ3(G), if g ≥ 7 or δ ≥
4.

(3) [7] Let G be a κ3-connected graph with girth
g ≥ 4, minimum degree δ ≥ 3 and diameter D. If
D ≤ g − 4, then κ3(G) = ξ3(G).

In this paper, we investigate super-λ3 connectivity
and super-κ3 connectivity of graphs with girth g ≥ 4
and minimum degree δ ≥ 3. We also study the con-
nectivity of a kind of transformation graphs. Some
sufficient conditions for the graphs to be super-λ3

(resp. super-κ3) are given in Theorem 3.1, which de-
pends on diameters of the graphs and their line graphs.

In Section 2 we shall give some properties of 3-
restricted edge cuts and 3-restricted cuts of graphs, in
Section 3 we prove the sufficient conditions in The-
orem 3.1 for graphs to be super-λ3 (resp. super-κ3).
In Section 4 we study the edge connectivity and super
edge connectivity of a kind of transformation graphs.

2 Properties of 3-restricted edge cuts
and 3-restricted cuts of graphs

If G is a graph with girth g ≥ 4, then every con-
nected subgraph of G with three vertices is a path xyz
of length two. Thus, ξ3(G) = min{d(x) + d(y) +
d(z)− 4 : xyz is a path of length two in G}.

Lemma 2.1. Let G be a connected graph with
girth g ≥ 4, minimum degree δ ≥ 3 and ξ3(G). Let
X ⊆ V be a vertex cut with |X| ≤ ξ3(G) and C be
any connected component of G−X with |V (C)| ≥ 3.
Then the following assertions hold:
(1) There exists an edge uv in C such that
d({u, v}, X) ≥ b(g − 4)/2c.
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(2) If g is odd and |V (C)| ≥ 4, then there is a ver-
tex u ∈ C with d(u,X) ≥ (g − 5)/2 such that
|N(g−5)/2(u) ∩X| ≤ 1.

Proof. For g = 4, 5, 6, both assertions of the lemma
hold, since d(u,X) ≥ 1 for all u in C and |V (C)| ≥
3. So suppose that g ≥ 7 and let µ = max{d(u,X) :
u ∈ V (C)}. Note that µ ≥ 1. If µ ≥ b(g − 2)/2c,
then both assertions clearly hold. Thus, we assume
that µ ≤ b(g − 4)/2c.

(1) If µ = 1, then the result holds. Thus assume
that µ ≥ 2.

Claim 1. There is an edge uv in C such that
d({u, v}, X) = µ.

We argue by contradiction. Suppose that each
vertex u in C at d(u,X) = µ satisfies d(v, X) = µ−1
for all v ∈ N(u). As δ ≥ 3, take w, v ∈ N(u), then
vuw is a 2-path in C. Thus d(v, X) = d(w, X) =
µ − 1. Each vertex in N(X+

u (w)) and N(X+
u (v))

is at distance µ − 1 from X . Moreover, we have
|Nµ−1(X=

u (w)) ∩ X| ≥ |X=
u (w)|. Otherwise, there

are two vertices x1, x2 ∈ X=
u (w) both at distance

µ−1 from a vertex x ∈ Nµ−1(X=
u (w))∩X . There is

a cycle going through {x1, w, x2, x} of length at most
2µ ≤ 2b(g − 4)/2c ≤ g − 4, contrary to the fact
that the length of a shortest cycle in G is equal to g.
Similarly, we have

|Nµ−1(N(u)− v − w) ∩X| ≥ |N(u)− v − w|,
|Nµ−1(X=

u (v)) ∩X| ≥ |X=
u (v)|,

|Nµ−1(X=
u (w)) ∩X| ≥ |X=

u (w)|,
|Nµ−1(w) ∩X| ≥ |X−

u (w)|,
|Nµ−1(v) ∩X| ≥ |X−

u (v)|,
|Nµ−1(N(X+

u (w))− w) ∩X| ≥ |X+
u (w)|,

|Nµ−1(N(X+
u (v))− v) ∩X| ≥ |X+

u (v)|.

Likewise, the sets Nµ−1(X=
u (w))∩X, Nµ−1(N(u)−

v − w) ∩ X, Nµ−1(X=
u (v)) ∩ X, Nµ−1(w) ∩

X, Nµ−1(v) ∩ X, Nµ−1(N(X+
u (w)) − w) ∩ X , and

Nµ−1(N(X+
u (v)) − v) ∩ X are pairwise disjoint.

Hence we have

ξ3(G) ≥ |X|
≥ |Nµ−1(X=

u (w)) ∩X|+
|Nµ−1(w) ∩X|+
|Nµ−1(X=

u (v)) ∩X|+
|Nµ−1(N(u)− v − w) ∩X|+
|Nµ−1(v) ∩X|+
|Nµ−1(N(X+

u (w))− w) ∩X|+
|Nµ−1(N(X+

u (v))− v) ∩X|
≥ |X=

u (w)|+ |X−
u (w)|+

|X=
u (v)|+ |N(u)− v − w|+

|X−
u (v)|+ |X+

u (w)|
+|X+

u (v)|
= d(u) + d(w) + d(v)− 4
≥ ξ3(G).

Thus, the above inequalities become equalities, yield-
ing

X = (Nµ−1(X=
u (w)) ∩X) ∪

(Nµ−1(N(u)− v − w) ∩X) ∪
(Nµ−1(X=

u (v)) ∩X)
∪(Nµ−1(w) ∩X) ∪ (Nµ−1(v) ∩X)
∪(Nµ−1(N(X+

u (w))− w) ∩X) ∪
(Nµ−1(N(X+

u (v))− v) ∩X). (1)

And

|Nµ−1(N(u)− v − w) ∩X| = |N(u)− v − w|;
|Nµ−1(N(X+

u (w))− w) ∩X| =
|N(X+

u (w))− w| = |X+
u (w)|;

|Nµ−1(N(X+
u (v))− v) ∩X| = |N(X+

u (v))− v|
= |X+

u (v)|. (2)

From (2) it follows that if |X+
u (w)| > 0, then every

vertex y ∈ X+
u (w) has degree 2, which contradicts to

the fact that δ ≥ 3. Then X+
u (w) = ∅. Similarly,

X+
u (v) = ∅. Furthermore, (2) also implies that each

vertex x ∈ N(u)− v −w has one unique neighbor in
X at distance µ − 1, that is, |X−

u (x)| = 1. Similarly,
for the edge ux we obtain that X+

u (x) = ∅, which
implies that X=

u (x) 6= ∅ because δ ≥ 3. Take a vertex
x′ ∈ X=

u (x), from (1) we conclude that there is a
cycle passing through {x′, x, u} and the vertex y ∈
Nµ−1(x′)∩X of length at most 2(µ−1)+4 ≤ g−1,
then there would be a cycle of length less than g, a
contradiction.

Claim 2. µ ≥ b(g − 4)/2c.
By contradiction, suppose that µ ≤ b(g−4)/2c−

1. From Claim 1 we know there is an edge uv in C
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such that d({u, v}, X) = µ. In this case, X+
u (v) =

X+
v (u) = ∅. Then C has a 2-path uvw such that

d(w, X) = µ or d(w, X) = µ− 1.
Firstly, assume that d(w, X) = µ. Thus

we have X+
v (w) = ∅. Arguing as in Claim

1 we have |Nµ(X=
uw(v)) ∩ X| ≥ |X=

uw(v)| and
|Nµ(v) ∩ X| ≥ |X−

uw(v)|. Furthermore, the
sets Nµ(X=

uw(v)) ∩ X, Nµ(v) ∩ X, Nµ(X=
v (u)) ∩

X, Nµ(u)∩X, Nµ(X=
v (w))∩X and Nµ(w)∩X are

pairwise disjoint. Therefore we have

ξ3(G) ≥ |X|
≥ |Nµ(X=

uw(v)) ∩X|+ |Nµ(v) ∩X|
+ |Nµ(X=

v (u)) ∩X|+ |Nµ(u) ∩X|
+ |Nµ(X=

v (w)) ∩X|+ |Nµ(w) ∩X|
≥ |X=

uw(v)|+ |X−
uw(v)|+

|X=
v (u)|+ |X−

v (u)|+
|X=

v (w)|+ |X−
v (w)|

= d(u) + d(w) + d(v)− 4
≥ ξ3(G).

Thus, the above inequalities become equalities, yield-
ing

X = (Nµ(X=
uw(v)) ∩X) ∪ (Nµ(v) ∩X) ∪

(Nµ(X=
v (u)) ∩X) ∪ (Nµ(u) ∩X) ∪

(Nµ(X=
v (w)) ∩X) ∪ (Nµ(w) ∩X) (3)

and

|Nµ(X=
uw(v)) ∩X| = |X=

uw(v)|,
|Nµ(X=

v (u)) ∩X| = |X=
v (u)|,

|Nµ(X=
v (w)) ∩X| = |X=

v (w)|. (4)

From (4) we know that every vertex z ∈ X=
uw(v) ∪

X=
v (u) ∪X=

v (w) has a unique neighbor at distance µ
in X . As δ ≥ 3, there exists a vertex z′ ∈ N(z) ∩
Nµ(X) and z′ ∈ {u, v, w}, for every z ∈ X=

uw(v) ∪
X=

v (u) ∪ X=
v (w). From (3) it follows that there is a

cycle of length at most 2µ+5 ≤ g−1, contrary to the
fact that the length of a shortest cycle in G is equal to
g.

Secondly if d(w, X) = µ−1, then it is analogous
to the case of d(w, X) = µ.

As a consequence of both Claim 1 and Claim 2
we conclude that there exists an edge uv in C such
that d({u, v}, X) ≥ b(g − 4)/2c.

(2) Suppose now that µ = (g − 5)/2 otherwise
by item (1) we are done. And we denote CX = {u ∈
V (C) : d(u,X) = (g − 5)/2}. By item (1) we can
take an edge uv in G[CX ].

Firstly, assume (N(u)−v)∩CX 6= ∅ or (N(v)−
u) ∩ CX 6= ∅, say, (N(v) − u) ∩ CX 6= ∅. Notice

that X+
v (u) = X+

v (w) = X+
uw(v) = ∅ and that the

sets X=
v (u), X−

v (u), X=
v (w), X−

v (w), X=
uw(v) and

X−
uw(v) are pairwise disjoint. We will prove it by con-

tradiction.
By contradiction, suppose that any vertex

u in CX satisfies |N(g−5)/2(u) ∩ X| ≥ 2.
Then we have |N(g−5)/2(X=

v (u)) ∩ X| ≥
2|X=

v (u)|, |N(g−5)/2(X=
uw(v)) ∩ X| ≥ 2|X=

uw(v)|,
and |N(g−5)/2(X=

v (w)) ∩ X| ≥ 2|X=
v (w)|. Since

the sets N(g−5)/2(X=
v (u)) ∩ X, N(g−7)/2(X−

v (u)) ∩
X, N(g−5)/2(X=

uw(v)) ∩ X, N(g−7)/2(X−
uw(v)) ∩

X, N(g−5)/2(X=
v (w))∩X and N(g−7)/2(X−

v (w))∩X
are pairwise disjoint, it follows that

ξ3(G) ≥ |X|
≥ |N(g−5)/2(X

=
v (u)) ∩X|+

|N(g−7)/2(X
−
v (u)) ∩X|+

|N(g−5)/2(X
=
uw(v)) ∩X|+

|N(g−7)/2(X
−
uw(v)) ∩X|+

|N(g−5)/2(X
=
v (w)) ∩X|+

|N(g−7)/2(X
−
v (w)) ∩X|

≥ 2|X=
v (u)|+ |X−

v (u)|+
2|X=

uw(v)|+ |X−
uw(v)|+

2|X=
v (w)|+ |X−

v (w)|
≥ ξ3(G) + |X=

v (u)|+
|X=

uw(v)|+ |X=
v (w)|.

Then X=
v (u) = X=

uw(v) = X=
v (w) = ∅ and

X = (N(g−5)/2(u) ∩X) ∪ (N(g−5)/2(v) ∩X) ∪
(N(g−5)/2(w) ∩X). (5)

Furthermore, we can obtain |N(g−5)/2(u) ∩ X| =
|X−

v (u)|, |N(g−5)/2(v) ∩ X| = |X−
uw(v)| and

|N(g−5)/2(w) ∩ X| = |X−
v (w)|. This means that

µ = (g − 5)/2 ≥ 2. As δ ≥ 3, we have |N(z) ∩
(CX − u)| ≥ d(z) − 2 ≥ 1 for all z ∈ X−

v (u)
(Otherwise a cycle of length at most g − 2 would ap-
pear). Take a vertex z ∈ X−

v (u) and consider a vertex
z′ ∈ N(z)∩(CX−u). Then from (5) a cycle of length
at most g − 1 would appear, a contradiction.

Secondly, if (N(u)− v)∩CX = ∅ and (N(v)−
u) ∩ CX = ∅, then take a vertex w in N(v) with
d(w, X) = (g − 7)/2. Hence uvw is a 2-path in C, it
is analogous to the above case.

Let G = (V, E) be a λ3-connected graph. An
arbitrary λ3-cut F can be denoted by [V (C), V (C)],
where C and C are the only two components of G−F .
There are X ⊆ V (C) and Y ⊆ V (C) such that X∪Y
is the set of the end vertices of [V (C), V (C)], and so
[V (C), V (C)] = [X, Y ].
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A λ3-connected graph G is said to be super-λ3, if
G is λ3-optimal and every minimum 3-restricted edge
cut isolates a component with exactly three vertices.
A κ3-connected graph G is said to be super-κ3, if
κ3(G) = ξ3(G) and the deletion of each minimum 3-
restricted cut isolates a component with exactly three
vertices.

Lemma 2.2. Let G be a connected graph with girth
g ≥ 6, and minimum degree δ ≥ 3. Let [V (C), V (C)]
= [X, Y ] be a λ3-cut. Then the following assertions
hold:
(1) If V (C) = X , then G is super-λ3.
(2) If G is not super-λ3, then C−X has a component
with at least three vertices.

Proof. Since g ≥ 6 and δ ≥ 3, by Theorem 1.1 G is
λ3-connected.

(1) Suppose that V (C) = X , then each vertex of
C is incident with some edges of [X, Y ]. If |V (C)| =
3, then we are done. So assume that |V (C)| ≥ 4. Let
uvw be a 2-path of C. Because δ ≥ 3, we assume
that |X=

v (u)| ≥ 1. Since girth g ≥ 6, thus arguing as
before, we have

ξ3(G) ≥ λ3(G)
= |[X, Y ]|
≥ |[u, Y ]|+ |[v, Y ]|+

|[w, Y ]|+ |[X=
v (u), Y ]|+

|[X=
uw(v), Y ]|+ |[X=

v (w), Y ]|
≥ |[u, Y ]|+ |[v, Y ]|+

|[w, Y ]|+ |X=
v (u)|+

|X=
uw(v)|+ |X=

v (w)|
≥ 3 + d(u)− 1 + d(v)− 2 +

d(w)− 1
> ξ3(G),

which is a contradiction.

(2) By item (1) we have C − X 6= ∅. Suppose
that any component of C−X has at most two vertices.
Let C1, C2, · · · , Ck be the components of C −X .

Case 1. Each component Ci satisfies |Ci| = 1.

Take C1 from C1, C2, · · · , Ck. Let C1 = {v}.
Then N(v) ⊆ X . And δ ≥ 3, we pick u,w ∈ N(v),
and thus uvw is a 2-path in C. Arguing as item (1),

we have

ξ3(G) ≥ λ3(G)
= |[X, Y ]|
≥ |[N(u)− v, Y ]|+ |[N(w)− v, Y ]|+

|[N(v)− u− w, Y ]|
≥ |N(u)− v|+ |N(w)− v|+

|N(v)− u− w|
= d(u) + d(v) + d(w)− 4
≥ ξ3(G).

It follows that |[N(u)−v, Y ]| = |N(u)−v|, |[N(v)−
u − w, Y ]| = |N(v) − u − w|, |[N(w) − v, Y ]| =
|N(w) − v| and X = (N(u) − v) ∪ (N(v) − u −
w) ∪ (N(w) − v). Hence [{u,w}, Y ] = ∅, which is
a contradiction.

Case 2. There is a component C1 with |C1| = 2.
Assume that V (C1) = {u, v}. Then C1 = K2,

and N(u) − v ⊆ X, N(v) − u ⊆ X . Take w ∈
X ∩ (N(v) − u). Then uvw is a 2-path in C. As
g ≥ 6, arguing as in (1), we have

ξ3(G) ≥ λ3(G)
= |[X, Y ]|
≥ |[N(u)− v, Y ]|+ |[N(v)− u− w, Y ]|+

|[(N(w)− v) ∩X, Y ]|+ |[w, Y ]|
= d(u) + d(v) + d(w)− 4
≥ ξ3(G).

It follows that |[N(u)−v, Y ]| = |N(u)−v|, |[N(v)−
u−w, Y ]| = |N(v)−u−w|, |[(N(w)−v)∩X, Y ]| =
|(N(w)−v)∩X| and X = (N(u)−v)∪(N(v)−u−
w)∪((N(w)−v)∩X)∪{w}. Therefore, for any x ∈
(N(u)−v)∪(N(v)−u−w)∪((N(w)−v)∩X), we
have |[x, Y ]| = 1. Since g ≥ 6 and δ ≥ 3, it follows
that N(x) ∩ (X − x) = ∅. So x is adjacent to some
Ci’s (2 ≤ i ≤ k). If there is a Ci = {y} such that y ∈
N(x), then N(y) ⊆ X . As g ≥ 6 and δ ≥ 3, we have
|N(y) ∩ (N(u)− v)| ≤ 1, |N(y) ∩ (N(v)− u)| ≤ 1
and |N(y) ∩ (N(w) ∩X)| ≤ 1.

Without loss of generality, we assume that
|N(y)∩(N(w)∩X)| = 1, then N(y)∩(N(v)−u) =
∅, {u, v} * N(y), and we have |N(y) ∩ (N(u) −
v)| ≥ 2. There is a cycle with length smaller than g,
a contradiction. If |N(y) ∩ (N(w) ∩ X)| = 0, then
|N(y)∩(N(u)−v)| ≥ 2 or |N(y)∩(N(v)−u)| ≥ 2.
There is also a cycle of length smaller than g, which
is impossible.

If there is a |Cj | = 2 which x is adjacent to, then
it is analogous to the case of |Ci| = 1. We discuss
the neighbors of each vertex in Cj , we can obtain the
required result.
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Recall that in the line graph L(G) of a graph G,
each vertex represents an edge of G, and two vertices
in a line graph are adjacent if and only if the corre-
sponding edges of G are adjacent. Let us consider the
edges x1y1, x2y2 ∈ E(G). The distance between the
corresponding vertices of L(G) satisfies

dL(G)(x1y1, x2y2) = dG({x1, y1}, {x2, y2})+1, (6)

which is useful to prove that D(G)−1 ≤ D(L(G)) ≤
D(G) + 1.

3 Some sufficient conditions for
graphs to be super-λ3 (resp. super-
κ3)

Now, we will show Theorem 3.1 by contradiction.

Theorem 3.1. Let G be a connected graph with girth
g ≥ 4 and minimum degree δ ≥ 3. The following
assertions hold:

(1) If D(G) ≤ g − 4, then G is super-λ3.
(2) If D(G) ≤ g − 5, then G is super-κ3.
(3) If the diameter of the line graph D(L(G)) ≤

g − 4, then G is super-λ3.
(4) If the diameter of the line graph D(L(G)) ≤

g − 5, then G is super-κ3.

Proof. Since g ≥ 4, clearly G is different from the
graphs in Fig.1. Thus, by Theorem 1.1, G is λ3-
connected. Moreover, if g ∈ {4, 5, 6}, then theorem
clearly holds. So we assume that g ≥ 7. By part (2)
of Theorem 1.2, G is κ3-connected.

(1) From Theorem 1.2 it follows that λ3 = ξ3.
Assume that G is not super-λ3. Let [V (C), V (C)] =
[X, Y ] be a λ3-cut with |V (C)| ≥ 4, |V (C)| ≥ 4. By
Lemma 2.2 we know that both C − X and C − Y
contain a connected component say H and K, respec-
tively, of cardinality at least three vertices. Hence both
X and Y are cutsets with |X|, |Y | ≤ ξ3(G). From
Lemma 2.1 there exist two vertices u ∈ V (H) and
u ∈ V (K) such that g − 4 ≥ D(G) ≥ d(u, u) ≥
d(u,X) + 1 + d(u, Y ) ≥ 2b(g − 4)/2c+ 1, which is
a contradiction if g is even.

And for g odd all the inequalities become equal-
ities. This means that max{d(u,X) : u ∈ V (H)} =
(g − 5)/2 and max{d(u, Y ) : u ∈ V (K)} = (g −
5)/2. Thus by Lemma 2.1, we can find u ∈ V (H)
with d(u,X) = (g − 5)/2 such that N(g−5)/2(u) ∩
X = {x} for some x ∈ X; and we can find
u ∈ V (K) with d(u, Y ) = (g − 5)/2 such that
N(g−5)/2(u) ∩ Y = {x} for some x ∈ Y . As
d(u, u) = g − 4, it follows that xx ∈ [X, Y ]. Clearly
we can find a vertex v ∈ N(u) with d(v, X) =

(g − 5)/2, because otherwise |N(g−5)/2(u) ∩ X| ≥
|N(u)| ≥ 2. Since d(v, u) = g − 4 we must have
x ∈ N(g−5)/2(v) or x ∈ N(g−3)/2(v). As a conse-
quence, the path from u to x together with the path
from v to x and the edge uv form a cycle of length at
most g − 2, which is a contradiction.

(2) From Theorem 1.2 it follows that κ3 = ξ3.
Assume that G is not super-κ3. Let X be an any κ3-
cut and consider two connected components C, C of
G −X with |V (C)| ≥ 4, |V (C)| ≥ 4. From Lemma
2.1 there exist two vertices u ∈ V (C) and u ∈ V (C)
such that g − 5 ≥ D(G) ≥ d(u, u) ≥ d(u,X) +
d(u,X) ≥ 2b(g− 4)/2c, which is a contradiction if g
is even.

And for g odd all the inequalities become equal-
ities. This means that max{d(u,X) : u ∈ V (C)} =
(g−5)/2 and max{d(u, Y ) : u ∈ V (C)} = (g−5)/2.
Thus by Lemma 2.1, we can find u ∈ V (C) with
d(u,X) = (g − 5)/2 such that N(g−5)/2(u) ∩ X =
{x} for some x ∈ X; and we can find u ∈ V (C) with
d(u, Y ) = (g−5)/2 such that N(g−5)/2(u)∩Y = {x}
for some x ∈ Y . As d(u, u) = g − 5, it follows that
x = x. Clearly we can find a vertex v ∈ N(u) with
d(v, X) = (g − 5)/2. Since d(v, u) = g − 5 we must
have x ∈ N(g−5)/2(v). As a consequence, the path
from u to x together with the path from v to x and the
edge uv form a cycle of length at most g−4, which is
a contradiction.

(3) Since D(L(G)) ≤ g − 4, then the diame-
ter D(G) ≤ g − 3, which means that λ3 = ξ3 by
Theorem 1.2. Assume that G is not super-λ3. Let
[V (C), V (C)] = [X, Y ] be a λ3-cut with |V (C)| ≥
4, |V (C)| ≥ 4. By Lemma 2.2 we know that both
C − X and C − Y contain a connected compo-
nent say H and K, respectively, of cardinality at
least three. Hence both X and Y are cutsets with
|X|, |Y | ≤ ξ3(G). From Lemma 2.1 there exists an
edge uv in C − X and there exist an edge u v in
C − Y satisfying d({u, v}, X) ≥ b(g − 4)/2c and
d({u, v}, Y ) ≥ b(g − 4)/2c. Then by using (6) we
have

g − 4 ≥ D(L(G))
≥ dL(G)(uv, u v)
= dG({u, v}, {u, v}) + 1
≥ dG({u, v}, X) + 1 +

dG(Y, {u, v}) + 1
≥ 2b(g − 4)/2c+ 2,

which is impossible.
(4) Now D(L(G)) ≤ g − 5. Thus the diameter

D(G) ≤ g−4, which means that κ3 = ξ3 by Theorem
1.2. Assume that G is not super-κ3. Let X be an
any κ3-cut and consider two connected components
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C, C of G −X with |V (C)| ≥ 4, |V (C)| ≥ 4. From
Lemma 2.1 there exists an edge uv in C−X and there
exists an edge u v in C−X satisfying d({u, v}, X) ≥
b(g − 4)/2c and d({u, v}, X) ≥ b(g − 4)/2c. Then
by using (6) we have

g − 5 ≥ D(L(G))
≥ dL(G)(uv, u v)
= dG({u, v}, {u, v}) + 1
≥ dG({u, v}, X) + dG(X, {u, v})

+1
≥ 2b(g − 4)/2c+ 1,

which is impossible.

4 Connectivity of transformation
graphs

Let G1 = (V1, E1) and G2 = (V2, E2). We sup-
pose V1 = {x1, · · · , xn} and V2 = {y1, · · · , yn}.
We define G = G1 ⊕ G2 : V (G) = V1 ∪ V2,
E(G) = E1 ∪ E2 ∪ {xiyi : i = 1, · · · , n}. We have
δ(G) = min{δ(G1) + 1, δ(G2) + 1}.

Theorem 4.1. Let G1 = (V1, E1) and G2 = (V2, E2)
be connected graphs. And λ(G1) = δ(G1), λ(G2) =
δ(G2). Then λ(G) = δ(G).

Proof. We assume λ(G) < δ(G). There exists an
edge cut F such that |F | = λ(G) and F = [X, X̄],
where X ⊆ V (G) and X̄ = V (G)−X .

Case 1. X ⊆ V1 or X ⊆ V2.
We can see Fig.2 for illustration.

We assume X ⊆ V1. Then

δ(G) > |[X, X̄]|
= |[X, V1 −X]|+ |[X, V2]|
≥ λ(G1) + 1
= δ(G1) + 1,

a contradiction.

Case 2. X1 = X ∩ V1 6= ∅ and X2 = X ∩ V2 6=
∅.

Set X̄1 = V1 −X1 and X̄2 = V2 −X2. We can
see Fig.3 for illustration.

We have

δ(G) > |[X, X̄]|
= |[X1, X̄1]|+ |[X2, X̄2]|

+|[X1, X̄2]|+ |[X2, X̄1]|
≥ λ(G1) + λ(G2)
≥ δ(G1) + 1,

a contradiction.
Both of two cases we are done.

The hypercube Qn = (V, E) with |V | = 2n and
|E| = n2n−1. Every vertex can be represent by an n-
bit binary string. Two vertices are adjacent if and only
if their binary string representation differs in only one
bit position. The hypercube Qn = Qn−1 ⊕Qn−1.

By Theorem 4.1 we have the following result.

Corollary 4.2. λ(Qn) = δ(Qn) = n.

Theorem 4.3. Let G1 = (V1, E1) and G2 = (V2, E2)
be connected graphs. And G1, G2 are super-λ,
δ(G1) ≥ 2, δ(G2) ≥ 2. Then G = G1 ⊕G2 is super-
λ.

Proof. By contradiction. We assume δ(G1) ≤ δ(G2).
And δ(G) = λ(G) by Theorem 4.1. Suppose that
G = G1 ⊕ G2 is not super-λ. Then there is an edge
cut F with |F | = δ(G) = λ(G) such that G − F is
not connected but has no isolated vertex. Thus each
component of G− F has at least two vertices.

We assume F = [X, X̄], where X ⊆ V (G) and
X̄ = V (G)−X .

Case 1. X ⊆ V1 or X ⊆ V2.
We assume X ⊆ V1. We can see Fig.4 for illus-

tration.
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Then

δ(G) = |[X, X̄]|
= |[X, V1 −X]|+ |[X, V2]|
≥ λ(G1) + λ(G2)
= δ(G1) + δ(G2)
≥ δ(G1) + 2,

a contradiction.
Case 2. X1 = X ∩ V1 6= ∅ and X2 = X ∩ V2 6=

∅.
Set X̄1 = V1 −X1 and X̄2 = V2 −X2. We can

see Fig.5 for illustration.

We have

δ(G) = |[X, X̄]|
= |[X1, X̄1]|+ |[X2, X̄2]|

+|[X1, X̄2]|+ |[X2, X̄1]|
≥ λ(G1) + λ(G2)
= δ(G1) + δ(G2)
≥ δ(G1) + 2,

a contradiction.
Both of two cases we are done.
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